• Title/Summary/Keyword: 전산 유동가시화

Search Result 76, Processing Time 0.025 seconds

Modeling of Combustion and Pollutant Emissions in IC Engines (내연기관 연소 및 pollutant 모델링)

  • Huh Kang Y.
    • Journal of the Korean Society of Visualization
    • /
    • v.3 no.2
    • /
    • pp.14-20
    • /
    • 2005
  • 내연기관 연소는 난류유동, 분무, 연소, 열전달의 복합적인 현상으로서 열역학적 해석이 주류를 이루어 왔으나 컴퓨터의 발전에 따라 효율 개선과 공해 저감을 목표로 전산유체해석 기법이 적극적으로 도입되고 있다. 내연 기관 연소의 근간을 형성하는 난류 연소 모델링의 기본 개념으로서 가솔린엔진에서의 예혼합연소와 디젤엔진에서의 확산연소에 대한 영역조건평균(zone conditional averaging) 모델과 조건평균닫힘(conditional moment closure) 모델에 대해 설명하였으며 $NO_x$와 soot 예측에 대한 적용과 엔진응용 사례를 소개하였다.

  • PDF

Computational Flow Analysis and Preliminary Measurement for the CANDU-6 Moderator Tank Model (CANDU-6 감속재 탱크 모형의 유동장 전산해석 및 예비측정)

  • Cha, Jae Eun;Choi, Hwa Lim;Rhee, Bo Wook;Kim, Hyoung Tae
    • Journal of the Korean Society of Visualization
    • /
    • v.10 no.3
    • /
    • pp.30-36
    • /
    • 2012
  • We are planning to construct a scaled-down moderator facility to simulate the CANDU-6 moderator circulation phenomena during steady state operating and accident conditions. In the present work a preliminary experiment using a 1/40 scaled-down moderator tank has been performed to investigate the anticipated problems of the flow visualization and measurement in the planning scaled-down moderator facility. We shortly describe CFD analysis result for the 1/40 scaled-down test model and the flow measurement techniques used for this test facility under isothermal flow conditions. The Particle Image Velocimetry (PIV) method is used to visualize and measure the velocity field of water in a transparent Plexiglas tank. Planar Laser Induced Fluorescence (PLIF) technique is used to evaluate the feasibility of temperature field measurement in the range of $20-40^{\circ}C$ of water temperature using an one-color method.

Experimental and Numerical Flow Visualization on Detailed Flow Field in the Post-surgery Models for the Simulation of the Inferior Turbinectomy (하비갑개 수술 후 비강 모델 내의 세부 유동장의 실험 및 전산 유동가시화)

  • Chang, Ji-Won;Heo, Go-Eun;Kim, Sung-Kyun
    • Journal of the Korean Society of Visualization
    • /
    • v.9 no.3
    • /
    • pp.65-70
    • /
    • 2011
  • Three major physiological functions of nose can be described as air-conditioning, filtering and smelling. Detailed knowledge of airflow characteristics in nasal cavities is essential to understanding of the physiological and pathological aspects of nasal breathing. In our laboratory, a series of experimental investigations have been conducted on the airflows in normal and abnormal nasal cavity models by means of PIV under both constant and periodic flow conditions. In this work, more specifically experimental and numerical results on the surgically modified inferior turbinate model were presented. With the high resolution CT data and a careful treatment of the model surface under the ENT doctor's advice yielded quite sophisticated cavity models for the PIV experiment. Physiological nature of the airflow was discussed in terms of velocity distribution and vortical structure for constant inspirational flow. Since the inferior and middle turbinate are key determinants of nasal airflow, the turbinectomy obviously altered the main stream direction. This phenomenon may cause local changes in physiological function and the flow resistance.

Flow Characteristics in a Human Airway model for Oral Cancer Surgery by PIV Experiment and Numerical Simulation (PIV 측정 및 수치해석을 이용한 구강암 수술에 따른 기도 형상 내 유동 특성)

  • Hong, Hyeonji;An, Se Hyeon;Seo, Heerim;Song, Jae Min;Yeom, Eunseop
    • Journal of the Korean Society of Visualization
    • /
    • v.19 no.3
    • /
    • pp.115-122
    • /
    • 2021
  • Oral cancer surgery typically consists of resection of lesion, neck dissection and reconstruction, and it has an impact on the position of hyoid bone. Therefore, morphological change of airway can occur since the geometric parameter of airway is correlated with the hyoid bone. Airflow is affected by geometry of the airway. In this study, flow characteristics were compared between pre- and post-surgery models by both particle image velocimetry (PIV) and numerical simulation. 3D model of upper airway was reconstructed based on CT data. Velocity is accelerated by the reduced channel area, and vortex and recirculation region are observed in pre- and post-surgery models. For the post-surgery model, high pressure distribution is developed by significantly decreased hydraulic diameter, and the longitudinal flow stream is also interrupted.

Flow characteristics validation around drain hole of fan module in refrigerator (냉장고 팬 모듈의 물빠짐 구멍 주변 유동 특성 검증)

  • Jinxing, Fan;Suhwan, Lee;Heerim, Seo;Dongwoo, Kim;Eunseop, Yeom
    • Journal of the Korean Society of Visualization
    • /
    • v.20 no.3
    • /
    • pp.102-108
    • /
    • 2022
  • In the fan module of the intercooling refrigerator, a drain hole structure was designed for stable drainage of defrost water. However, the airflow passing through the drain hole can disturb flow features around the evaporator. Since this backflow leads to an increase in flow loss, the accurate experimental and numerical analyses are important to understand the flow characteristics around the fan module. Considering the complex geometry around the fan module, three different turbulence models (Standard k-ε model, SST k-ω model, Reynolds stress model) were used in computational fluid dynamics (CFD) analysis. According to the quantitative and qualitative comparison results, the Standard k-ε model was most suitable for the research object. High-accuracy results well match with the experiment result and overcome the limitation of the experiment setup. The method used in this study can be applied to a similar research object with an orifice outflow driven by a rotating blade.

Internal flow characteristics inside an automobile HVAC according to temperature operation mode (온도조절 모드에 따른 차량용 공조장치 내부 유동특성)

  • Ji, Ho-Seong;Lee, Sang-Joon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.687-688
    • /
    • 2008
  • Air flow of inside automobile HVAC module has been visualized using a high-resolution PIV technique with varying the temperature operation mode. The PIV system consists of a 2-head Nd:YAG laser(125 mJ), a high-resolution CCD camera(2K x 2K), optics and a synchronizer. A real automobile HVAC module was used directly with slight modification for clear optical windows. Some parts of the HVAC module casing were replaced with transparent windows for capturing flow images with laser light sheet beam illumination. Time-averaged velocity field were measured in three temperature control modes. Flow characteristics of the air-conditioned air flow in the automobile HVAC system were evaluated.

  • PDF

Computational Flow Analysis around Coaxial Rotor Blades with Various Ducts (덕트형상에 따른 동축반전 로터블레이드 주위의 전산유동해석)

  • Kim, Su-Yean;Choi, Jong-Wook;Kim, Sung-Cho
    • Journal of the Korean Society of Visualization
    • /
    • v.8 no.2
    • /
    • pp.23-30
    • /
    • 2010
  • Regarding the aircrafts with a rotor blade system, the miniaturization of them is limited due to the rotor blade length and the tail rotor system. To miniaturize an aircraft, an equipment is required that increases thrust and also shortens the length of the rotor blade. The present study will conduct the flow analysis for miniaturizing the aircraft by applying a duct to the coaxial rotor blade system without tail rotor. First, the verification on the calculated results was conducted through the computational flow analysis on the coaxial rotor blade system without a duct. Then, the flow analysis for the coaxial rotor blade systems was performed including Ka-60 duct, Single duct, Twin duct, and Double duct, respectively. From the numerical results, the thrust coefficient appeared higher with the duct than without a duct for the coaxial rotor blade system. Especially, in the case of Double duct, the thrust was improved due to the increase of incoming flow and the extension of the wake area. These results will be used as the basic concepts for miniaturizing the aircraft with the rotor blade system. The flow analysis on the coaxial rotor blade system including the fuselage remains as a future work.

Design and Evaluation of a Uniform Flow Microreactor (균일 유동 마이크로 반응기의 설계와 검증)

  • Park, Ji-Min;Yi, Seung-Jae;Kim, Kyung-Chun
    • Journal of the Korean Society of Visualization
    • /
    • v.8 no.3
    • /
    • pp.29-34
    • /
    • 2010
  • This paper proposes a design method to provide uniform flow in a microreactor. Uniform momentum approach is adopted with 10 pillars before and after the chamber having a different slope inlet channel. The slope and number of pillars are two factors to make a uniform flow in the microreactor, covering the hexagonal gold layer. The CFD analysis about the designed microreactor is carried out and the velocity vector field measurements are made in the fabricated microreactor by micro PIV technique. The uniformity of microreactor flow was confirmed by both numerical simulation and experimental results.

Analysis of Flow Distribution for Laser Printer Using PIV Technique (PIV기법을 이용한 레이저프린터의 유동 분포 분석)

  • Kim, Seung-Bae;Lee, Soo-Hong;Kim, Tae-Kyu;Lee, Ho-Ryul;Ko, Han-Seo
    • Journal of the Korean Society of Visualization
    • /
    • v.8 no.3
    • /
    • pp.49-55
    • /
    • 2010
  • Thermal flows inside a laser printer are affected by generated heat from a fuser and boards. Thus, the effect of fans has been investigated to control the thermal flows and behaviors of toners. In order to analyze the phenomena experimentally, a PIV (Particle Image Velocimetry) has been used, and then the flow inside the printer has been predicted by the CFD (Computational Fluid Dynamics) in this study to determine the efficient flow distribution by an optimum design of the printer. The determined optimum design has been confirmed by the developed PIV technique so that the efficiency of the laser printer can be improved by the proposed design.

Analysis of heat and fluid flows in an instant water heater according to design parameters of an electric heat device (전기히터의 설계 변수에 따른 순간온수기 열유동 특성 해석)

  • Hui Sun;Joon Hyun Kim;Jaeyong Sung
    • Journal of the Korean Society of Visualization
    • /
    • v.21 no.3
    • /
    • pp.23-32
    • /
    • 2023
  • This study aims to explore the heat transfer and flow phenomena inside an instant water heater and the influence of the design parameters of the water heater on the heating performance was investigated by 3-D numerical simulations considering heat convection. The design parameters are the heating ceramic dimension, the power of the heating device, and the water flow rate. The results show that a reasonable space for the heating device is required to optimize the heating performance. It is desirable to design higher heating device as possible for a given electric power. There exists a critical water flow rate that best meets the heating performance. The change in electric power has no impact on the flow phenomena and heating performance.