• Title/Summary/Keyword: 전산화재해석

Search Result 2, Processing Time 0.018 seconds

Investigation of the Fire Source in the Warehouse under Bridge using FDS Code (FDS code를 이용한 교량하부창고 화재발생원 영향분석)

  • Zi, Goang-Seup;Lee, Seung-Jung;Shin, Yeon-Ho;Shim, Jae-Won;Kim, Ji-Hwan
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.6
    • /
    • pp.663-673
    • /
    • 2011
  • In this study, we analysed the effect of the fire source in the warehouse under the bridge and the height of the bridge using FDS code. To compare accuracy of simulation results, we simulated the experimental result with unit combustibles which is heptane as well as the mock-up test. Using this method, we evaluated the fire safety of the bridge which contains spalling and strength damage of concrete as well as damage of reinforcements according to the fire source and the height of the bridge. Most of the bridges are vulnerable to spalling of concrete. The book combustion has the strongest fire intensity which is expected to damage the bridge less than 30m height in the three types of the fire sources. The bridge over the 30m height can ensure the fire safety in the case of the rubber combustion.

Estimation of Chemical Flame Height based on Fuel Consumption in a Fire Field Model (필드모델에서 연료소모에 기초한 화학적 화염높이 산정)

  • Kim, Sung-Chan
    • Fire Science and Engineering
    • /
    • v.30 no.2
    • /
    • pp.92-97
    • /
    • 2016
  • The present study has been conducted to estimate the chemical flame height based on fuel consumption in fire field model. The calculation algorithms based on cumulative fraction of HRRPUL and fuel concentration along the z axis were applied to the results predicted by Fire Dynamics Simulator (FDS) version 6.3.2 and the mean chemical flame height was obtained by time averaging of instantaneous flame height with the algorithms. The mean flame height calculated by fuel concentration was quite well matched with that of cumulative value of HRRPUL within 10% over-prediction. This study contribute to a more detailed understanding of fire behavior and quantitative evaluation of flame height in the computational fire model.