• Title/Summary/Keyword: 전산유체학

Search Result 519, Processing Time 0.02 seconds

Design of launch pad for mitigating acoustic loads on launch vehicle at liftoff (우주발사체 발사 시 음향하중 저감을 위한 발사대 설계)

  • Tsutsumi, Seiji
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.4
    • /
    • pp.331-341
    • /
    • 2020
  • At liftoff, launch vehicles are subject to harmful acoustic loads due to the intense acoustic waves generated by propulsion systems. Because these waves can cause electronic and mechanical components of launch vehicles and payloads to fail, predicting and mitigating acoustic loads is an important design issue. This article presents the latest information about the generation of acoustic waves and the acoustic design methods applicable to the launch pad. The development of the Japanese Epsilon solid launcher is given as an example of the new methodology for launch pad design. Computational fluid dynamics together with 1/42 scale model testing were performed for this development. Effectiveness of the launch pad design to reduce acoustic loads was confirmed by the post-flight analysis.

A Study of Oscillation Characteristics of Supersonic Fluidic Oscillator With Shared Feedback Channel (공유피드백 유로를 갖는 초음속 유체진동기의 진동특성에 관한 연구)

  • Lee, SeungHeon;Park, SangHoon;Ko, HeeChang;Seo, SongHyun;Lee, Yeol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.3
    • /
    • pp.167-174
    • /
    • 2020
  • A study of flow characteristics of supersonic fluidic oscillators with shared feedback channel inside was carried out. Unsteady CFD analysis were performed and the numerical results were validated by comparison with the experimental ones observed for the same operation conditions. It was found that the mass flow between individual oscillators through the shared feedback channel directly influenced on the oscillating flow mechanism inside the oscillator, and finally on the synchronization of the jet oscillations. It was also observed that the oscillator with shared feedback channel provided higher pressure loss as well as higher oscillation frequency as compared to the single oscillator of the same geometric shape.

A Study on the Prediction of HLW Temperature from Natural Ventilation Quantity using CFD (전산유체학을 이용한 고준위 방사성 폐기물 처분장의 자연환기량에 의한 온도예측)

  • Roh, Jang-Hoon;Yu, Yeong-Seok;Jang, Seung-Hyun;Park, Seon-Oh;Kim, Jin
    • Tunnel and Underground Space
    • /
    • v.22 no.6
    • /
    • pp.429-437
    • /
    • 2012
  • This study predicted temperature in the disposal tunnels using computational fluid dynamics based on natural ventilation quantity that comes from high altitude and temperature differences that are the characteristics of high level waste repository. The result of the previous study that evaluated quantitatively natural ventilation quantity using a hydrostatic method and CFD shows that significant natural ventilation quantity is generated. From the result, this study performed the prediction of temperature in disposal tunnels by natural ventilation quantity by the caloric values of the wastes, at both deep geological repository and surface repository. The result of analysis shows that deep geological repository is effective for thermal control in the disposal tunnels due to heat transfer to rock and the generation of sufficient natural ventilation quantity, while surface repository was detrimental to thermal control, because surface repository was strongly affected by external temperature, and could not generate sufficient natural ventilation quantity. Moreover, this study found that in the case of deep geological repository with a depth of 200 m, the heatof about $10^{\circ}C$ was transferred to the depth of 500 m. Thus, it is considered that if the high level waste repository scheduled to be built in the country is designed placing an emphasis on thermal control, deep geological repository rather than surface repository is more appropriate.

Aeroelastic Response Analysis for Wing-Body Configuration Considering Shockwave and Flow Viscous Effects (충격파 및 유동점성 효과를 고려한 항공기 날개-동체 형상에 대한 공탄성 응답)

  • Kim, Dong-Hyun;Kim, Yu-Sung;Hwang, Mi-Hyun;Kim, Su-Hyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.10
    • /
    • pp.984-991
    • /
    • 2009
  • In this study, transonic aeroelastic response analyses have been conducted for the DLR-F4(wing-body) aircraft configuration considering shockwave and flow separation effects. The developed fluid-structure coupled analysis system is applied for aeroelastic computations combining computational structural dynamics(CSD), finite element method(FEM) and computational fluid dynamics(CFD) in the time domain. It can give very accurate and useful engineering data on the structural dynamic design of advanced flight vehicles. For the nonlinear unsteady aerodynamics in high transonic flow region, Navier-Stokes equations using the structured grid system have been applied to wing-body configurations. In transonic flight region, the characteristics of static and dynamic aeroelastic responses have been investigated for a typical wing-body configuration model. Also, it is typically shown that the current computation approach can yield realistic and practical results for aircraft design and test engineers.

ASSESSMENT OF PROPERTY INTERPOLATION METHODS IN LEVEL SET METHOD (레벨셋 기법의 물성 보간 방법에 대한 고찰)

  • Park, J.K.;Oh, J.M.;Kang, K.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.283-289
    • /
    • 2009
  • In level set method, material properties are made to change smoothly across an interface of two materials with different properties by introducing an interpolation or smoothing scheme. So far, the weighted arithmetic mean (WAM) method has been exclusively adopted in level set method, without complete assessment for its validity. We showed here that the weighted harmonic mean (WHM) method for rate constants of various rate processes, including viscosity, thermal conductivity, electrical conductivity, and permittivity, gives much more accurate results than the WAM method. The selection of interpolation scheme is particularly important in multi-phase electrohydrodynamic problems in which driving force for fluid flow is electrical force exerted on the phase interface. Our analysis also showed that WHM method for both electrical conductivity and permittivity gives not only more accurate, but also more physically realistic distribution of electrical force at the interface. Our arguments are confirmed by numerical simulations of drop deformation under DC electric field.

  • PDF

NUMERICAL SIMULATION OF INITIAL FIREBALL AFTER NUCLEAR EXPLOSION (핵폭발 초기 화구에 대한 수치해석)

  • Song, Seungho;Lee, Changhoon;Choi, Jung-Il
    • Journal of computational fluids engineering
    • /
    • v.19 no.4
    • /
    • pp.45-51
    • /
    • 2014
  • We develop a numerical method for solving the radiation hydrodynamic equations in one-dimensional spherical coordinates. The present method is validated through simulations of shock tube, thermal radiative diffusion and point explosion problems. The transient growth of the fireball is investigated by varying explosion yields. The present study clearly captures well-known breakaway phenomena related to the shock separation between pressure waves and thermal shock front. The fireball radius at the breakaway point is roughly increased by the yield to power of 0.4.

NUMERICAL INVESTIGATION ON CAPTURE OF NANOPARTICLES IN ELECTROSTATIC PRECIPITATOR WITHOUT CORONA DISCHARGER (코로나 방전기가 없는 전기집진기의 나노입자 집진에 관한 수치해석)

  • Lee, J.W.;Jang, J.S.;Lee, S.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.103-108
    • /
    • 2010
  • This article presents computational fluid dynamics (CFD) simulations of nanoparticle movements and flow characteristics in laboratory-scale electrostatic precipitator (ESP) without corona discharge, and for simulation, it uses the commercial CFD program(CFD-ACE) including electrostatic theory and Lagrangian-based equation for nanoparticle movement. For validation of CFD results, a simple cylindrical type of ESP is simulated and numerical prediction shows fairly good agreement with the analytical solution. In particular, the present study investigates the effect of particle diameter, inlet flow rate, and applied electric potential on particle collection efficiency and compares the numerical prediction with the experimental data, showing good agreement. It is found that the particle collection efficiency decreases with increasing inlet flow rate because the particle detention time becomes shorter, whereas it decreases with the increase in nanoparticle diameter and with the decrease of applied electric voltage resulting from smaller terminal electrostatic velocity.

  • PDF