• Title/Summary/Keyword: 전방산란율

Search Result 8, Processing Time 0.017 seconds

The Study of Forward Scattering Dose according to the Thickness of Filter in General Radiography (일반촬영 검사에서 필터 두께 증가에 따른 전방산란율에 관한 연구)

  • Choi, Il Hong;Kim, Kyo Tae;Heo, Ye Ji;Kang, Sang Sik;Noh, Si Cheol;Jung, Bong Jae;Nam, Sang Hee;Park, Ji Koon
    • Journal of the Korean Society of Radiology
    • /
    • v.9 no.7
    • /
    • pp.445-448
    • /
    • 2015
  • Recently there has been increasing interest in the filter to reduce the proportion of low-energy photons in the polychromatic X-ray, affect the quality of the image quality by X-ray hardening effect is a situation that has been overlooked. In this study, by evaluating the change in FSR based on the filter and it was quantitatively discuss scatter dose affecting the medical image quality. The results of the experiment, as the thickness of the filter is increased, up to 13.9%p, that tends to FSR increases appearance were evaluated. Based on these results, in compliance with the thickness of the filter that has been recommended in KS standard, even while reducing the radiation dose of the patient, in addition to the noise to about 1%p within the FSR only medical image the contribution to it is conceivable. Therefore, even while reducing radiation dose of the patient, in order to improve the quality of the medical image, the use of appropriate filter is considered important.

A study on the radiation exposure of simple abdomen Radiation in Radiography (복부 단순 방사선 검사 시 피폭선량에 대한 연구)

  • Yeo, Jin-Dong;Kim, Mi-Sook
    • Journal of the Korean Society of Radiology
    • /
    • v.1 no.3
    • /
    • pp.5-10
    • /
    • 2007
  • This study was performed to measure about exposure dose during simple abdmon radiation radiography. The exposure dose was measured by PDD, surface dose, respectively. The result was as followed: 1. When tube voltage were increased with 60-85kv, surface dose were increased. When FFD(focus film distance) at the 50-150cm and mAs were increased, surface dose were decreased. 2. The percentage depth dose(PDD) were appeared 50% below depth dose at 4cm with 60-75kv, and 6cm depth with 80-85kv, 5% below depth dose at 12cm with 60kv, and depth with 65-85kv. 3. The percentage forward scatter increased from 10% to 11.78% at the 60-85kv. The back scatter dose were increase from 25% to 37% at the 60-85kv. The side scatter dose were affected to heel effect.

  • PDF

The Study on Interpretation of the Scatter Degradation Factor using an additional Filter in a Medical Imaging System (의료 영상 시스템에서 부가 필터를 이용한 산란 열화 인자의 해석에 관한 연구)

  • Kang, Sang Sik;Kim, Kyo Tae;Park, Ji Koon
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.4
    • /
    • pp.589-596
    • /
    • 2019
  • X-rays used for diagnosis have a continuous energy distribution. However, photons with low energy not only reduce image contrast, but also contribute to the patient's radiation exposure. Therefore, clinics currently use filters made of aluminum. Such filters are advantageous because they can reduce the exposure of the patient to radiation. However, they may have negative effects on imaging quality, as they lead to increases in the scattered dose. In this study, we investigated the effects of the scattered dose generated by an aluminum filter on medical image quality. We used the relative standard deviation and the scatter degradation factor as evaluation indices, as they can be used to quantitatively express the decrease in the degree of contrast in imaging. We verified that the scattered dose generated by the increase in the thickness of the aluminum filter causes degradation of the quality of medical images.

The Study on Scattered Radiation Effects According to Acquisition of X-ray Imaging using Monte Carlo Simulation (몬테카를로 시뮬레이션을 이용한 X선 의료영상 획득 시 산란선 발생 영향 연구)

  • Park, Ji-Koon;Kang, Sang-Sik;Yang, Seung-Woo;Heo, Ye-Ji;Kim, Kyo-Tae
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.5
    • /
    • pp.549-555
    • /
    • 2018
  • The medical imaging technique images the contrast formed based on the difference in absorption coefficient of X-rays which changes according to the composition and thickness of the object. At this time, not only primary rays entering the image detector but also scattered rays greatly affect the image quality. Therefore, in this paper, Forward scattering rate and Scattered to primary ratio analysis were performed through Monte Carlo simulation in order to consider influence of scattered ray generated according to object thickness and radiation exposure area change on image quality. In the study, the Forward scattering rate corresponding to the thickness of the object was analyzed at a maximum of 15.3%p and the Scattered to primary ratio was analyzed at 2.00 to 4.54, but it was analyzed as maintaining a constant value for radiation exposure area change. Based on these results, the thickness of the object should be considered as a factor influencing the quality of the image, but radiation exposure area verified that it is a factor that does not affect the image quality. We believe that the results of this research can be utilized as basic information of scattered radiation to improve image quality.

Impact of Sea Surface Scattering on Performance of QPSK (해면산란이 QPSK 성능에 미치는 영향)

  • Xue, Dandan;Seo, Chulwon;Park, Jihyun;Yoon, Jong Rak
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.8
    • /
    • pp.1818-1826
    • /
    • 2014
  • Time-variant sea surface causes a forward scattering and Doppler spreading in received signal on underwater acoustic communication system. This results in time-varying amplitude, frequency and phase variation of the received signal. In such a way the channel coherence bandwidth and fading feature also change with time. Consequently, the system performance is degraded and high-speed coherent digital communication is disrupted. In this paper, quadrature phase shift keying (QPSK) performance is examined in two different sea surface conditions. The impact of sea surface scattering on performance is analyzed on basis of the channel impulse response and temporal coherence using linear frequency modulation (LFM) signal. The impulse response and the temporal coherence of the rough sea surface condition were more unstable and less than that of the calm sea surface condition, respectively. By relating these with time variant envelope, amplitude and phase of received signal, it was found that the bit error rate (BER) of QPSK are closely related to time variation of sea surface state.

The Evaluation of Lateral Scatter Ray of Gamma Camera (Gamma Camera에 있어 측면 선란선의 영향에 대한 평가)

  • Kim, Jae-Il;Lee, Eun-Byeol;Cho, Seong-Wook;Noh, Kyeong-Woon;Kang, Keon-Wook
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.22 no.1
    • /
    • pp.46-50
    • /
    • 2018
  • Purpose Generally, a collimator that installed in front of detector set a direction of gamma ray and remove a scatter ray. By the way, a lateral or oblique scatter ray is detected into crystal through collimator. At this study, we will evaluate a mount of count and spectrums of lateral scatter ray. Materials and Methods We used the SKY LITE (philips, netherlands) as a gamma camera, and $^{99m}Tc$, 1.11 GBq point source as a phantom. we put this point source at backside 50 cm of detector. After acquiring this for 1 min, we turned a detector next 10 degrees. Likely this, we acquired images at every 10 degrees from $0^{\circ}$ to $360^{\circ}$, analyzed images and spectrums. In case of patient study, we choose a 3 phase bone scan patient who had a hand disease, because scatter rays from body would detect on crystal. After acquiring blood flow and blood pool images, we analyzed images and spectrums. Additional, we put a lead gown on patient's hand, body. And then we compared and evaluated 3 type blood pool images (non lead gown, lead gown on a hand and on body). Results In case of phantom study, scatter ray counts at backside ($270^{\circ}-90^{\circ}$) are same with a background count. By the way, counts of scatter ray of oblique side ($0^{\circ}-50^{\circ}$, $220^{\circ}-270^{\circ}$) are 100-600 cps, furthermore, counts at frontside are over 4 Mcps. In case of patient study, a counts of hand blood pool scan are 1510 cps. But counts of hand with lead gown on hands and on body are each 1554 cps, 1299 cps. Conclusion Therefore, even though there is a collimator in front of detector, lateral scatter rays detect on crystal and affect to images and spectrums. Especially, if there is a high activity source at outside of detector when we examine low activity organs like hands or foot, we have to shield and remove the source at outside for a good image.

A Study on Characteristics of Ground-Penetrating Radar Signals for Detection of Buried Pipes (지하 매설관 탐지를 위한 지하탐사레이다 신호의 특성에 관한 연구)

  • Hyun, Seung-Yeup
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.1
    • /
    • pp.42-48
    • /
    • 2017
  • Characteristics of ground-penetrating radar(GPR) signals for detecting buried pipes are investigated numerically. Transmitting and receiving parts of a GPR system, a subsurface soil and a plastic pipe filled with a dielectric material are modeled by using the finite-difference time-domain(FDTD) method. FDTD simulations for observing aspects of GPR signals are performed as a function of the diameter of the pipe and the permittivity of the filling material in the pipe. GPR signals scattered by a dielectric filled pipe appear as a superposition of two waves, such as the specular wave from the front convex surface of the pipe and the axial wave from the rear concave surface of the pipe. We show that the amplitude, the polarity, the delay time of two waves depend on the size of the pipe and the permittivity of the filling material in the pipe.

Millimeter-Wave(W-Band) Forward-Looking Super-Resolution Radar Imaging via Reweighted ℓ1-Minimization (재가중치 ℓ1-최소화를 통한 밀리미터파(W밴드) 전방 관측 초해상도 레이다 영상 기법)

  • Lee, Hyukjung;Chun, Joohwan;Song, Sungchan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.8
    • /
    • pp.636-645
    • /
    • 2017
  • A scanning radar is exploited widely such as for ground surveillance, disaster rescue, and etc. However, the range resolution is limited by transmitted bandwidth and cross-range resolution is limited by beam width. In this paper, we propose a method for super-resolution radar imaging. If the distribution of reflectivity is sparse, the distribution is called sparse signal. That is, the problem could be formulated as compressive sensing problem. In this paper, 2D super-resolution radar image is generated via reweighted ${\ell}_1-Minimization$. In the simulation results, we compared the images obtained by the proposed method with those of the conventional Orthogonal Matching Pursuit(OMP) and Synthetic Aperture Radar(SAR).