• Title/Summary/Keyword: 전면기초

Search Result 217, Processing Time 0.02 seconds

정보 융합체계 현황 분석

  • Jo, Dong-Rae;Choe, Jeung-Won;Ju, Jae-U
    • Defense and Technology
    • /
    • no.12 s.274
    • /
    • pp.46-53
    • /
    • 2001
  • 미래 전쟁에 대비하기 위하여, 미국은 합동참모본부의 Joint Vision 2020에서 정보에서의 우월성을 기초로 압도적인 기동, 정확한 공격, 집중된 군수지원, 전면적인 방어를 이룩하여 전체적인 우위전력 확보를 도모하여, 정보에서의 우월성 확보를 위해 $C^4ISR$(Command, Control, Communication and Computer, Intelligence, Surveillance, Reconnaissance)개념에 의한 통합체계의 구축을 목표로 제시하고 있다.

  • PDF

정보 융합체계 현황 분석 (2)

  • Jo, Dong-Rae;Choe, Jeung-Won;Ju, Jae-U
    • Defense and Technology
    • /
    • no.1 s.275
    • /
    • pp.58-67
    • /
    • 2002
  • 미래 전쟁에 대비하기 위하여, 미국은 합동참모본부의 Joint Vision 2020에서 정보에서의 우월성을 기초로 압도적인 기동, 정확한 공격, 집중된 군수지원, 전면적인 방어를 이룩하여 전체적인 우위전력 확보를 도모하며, 정보에서의 우월성 확 보 를 위 해 $C^4ISR$(Command, Control, Communication and Computer, Intelligence, Surveillance, Reconnaissance) 개념에 의한 통합체계의 구축을 목표로 제시하고 있다.

  • PDF

An Experimental Study of the Soil Nailed Wall Behavior with Front Plate Rigidity (전면벽체 강성에 따른 쏘일네일링 벽체의 거동특성에 관한 실험적 고찰)

  • Kim, Hong-Taek;Kang, In-Kyu;Kwon, Young-Ho;Park, Si-Sam;Cho, Yong-Hoon
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.3
    • /
    • pp.87-94
    • /
    • 2002
  • Recently, there have been numerous attempts to expand the traditional temporary soil nailing system into a permanent wall. Two reasons for this include the soil nailed system's advantage of efficient and economic use of subgrade space and its ability to decrease the total construction cost. However, the systematic and logical design approach has not been proposed yet. The permanent soil nailing wall system, which utilizes precast concrete from soil nailing system, is already used in many countries, but the study of cast-in-place concrete lacing or rigid walls in bottom-up construction of traditional soil nailing walls is imperfect and insufficient. In this paper, various laboratory model tests have been carried out to investigate the influence of parameters, including stiffness of the rigid wall to the soil nailing structure with respect to failure mode, displacement patterns and tensile forces at the nail head in several levels of load. Then, the variation of earth pressure distribution on the soil nailing wall, built with a rigid front plate, is sought through different levels of surcharge load and tensile forces at the nail head.

The Study of Wave, Wave-Induced Current in CHUNG-UI Beach (충의휴양소 전면 해수욕장의 파랑 및 해빈류에 관한 연구)

  • Chang, Pyong-Sang;Bae, Sung-Gyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.6
    • /
    • pp.142-149
    • /
    • 2019
  • In this study, the past erosion history and current status in the CHUNG-UI beach of Eulwang-dong, Jung-gu, Incheon-Si, South Korea were investigated and analyzed the wave with wave-induced current to investigate the causes of coastal erosion. As a result, the significant wave height ($H_{1/3}$) was in the range of 0.07~1.57 m and the mean value was 0.21 m. The maximum wave height ($H_{max}$) was in the range of 0.02-4.76m and the mean value was 0.27m. The vertical wave height and cycles were estimated through numerical model experiments of wave transformation. The 50-year frequency design wave height ranged from 0.82m to 3.75m. As a result of the experiment of wave-induced current, wave-induced current in the CHUNG-UI beach was decreased after the installation of the Detached breakwater and the Jetty. On the other hand, when the crest elevation was increased up to 5 m, there was no significant change, but when the crest elevation was increased to 8m, strong wave-induced current occurred around the submerged breakwaters due to lowered depth of water. In addition, the main erosion of the CHUNG-UI beach is due to the intensive invasion of the wave characteristics coming from the outer sea into the white sandy beach. The deformation of the wave centered on the front of the sandy beach caused additional longshore currents flowing parallel to the sandy beach and rip currents in the transverse direction, thus confirming that the longshore sediment was moved out of the front and out of the sea. The results of this study can be used as preliminary data for the recovery of the sand and the selection of efficient erosion prevention facilities.

A Study on Analysis of vortex and Wave Screening Performance for Fixed-Floating Breakwater According to Cross section (단면형상 변화에 따른 고정된 부유식방파제의 유동장 분석과 소파성능에 관한 연구)

  • Kim, Heun;Yoon, Jae Seon;Cho, Yong-Sik
    • 한국방재학회:학술대회논문집
    • /
    • 2011.02a
    • /
    • pp.54-54
    • /
    • 2011
  • 기존의 착저식 방파제를 보완하기 위하여 부유식 방파제가 개발되었고, 많은 연구가 선행되어 왔다. 부유식 방파제의 최대 장점은 경제성과 친환경성이다. 그러나 부유식 방파제는 소파성능이 떨어진다는 단점이 있으며, 이를 개선하기 위해 잠재와 혼용, 배열형에 관한 연구등이 선행되어왔다. 그러나 이것은 경제성이라는 강점을 고려하지 못하였다. 그래서 본 연구에서는 부유식 방파제의 중요한 장점중 하나인 경제성을 고려해, 단면현상 변화만을 이용하여 부유식 방파제의 소파성능 개선하고자 하였다. RANS(Reynolds averaged Navier-Stokes) 방정식에 기초하여 VOF법과 $k-{\varepsilon}$ 난류모델을 결합한 수치모델인 CADMAS-SURF를 이용하였으며, 구조물 단면형상 변화를 이용해 와의 상호 간섭을 유도하였고, 이에 따른 투과율 변화를 관찰 하였다. 결과를 살펴보면 요철1 단면에서는 구조물 전면 하단부분과 구조물 후면 하단부분에서 와의 간섭이 일어났으며 가장 아래 요철 부분에서 유속의 전달현상이 보인다. 투과계수는 일반적인 부유식 방파제와 마찬가지로 L/B가 1~4사이 값인, 비교적 단주기에서는 0.3~0.4의 투과율을 보였으나 L/B가 5를 넘어가면서 0.45~0.55의 투과율을 보였고, 요철2 단면에서는 전면과 후면에서 발달한 와가 전, 후면 돌출부에 의해 바닥까지 전파되지 못하는 양상을 보였으며, 돌출부 사이 중앙부분에서 가장 활발한 와의 간섭을 관찰 할 수 있었다. 돌출부 아래에서 역시 강력한 와의 간섭을 보이고 있다. 투과율 역시 가장 낮은 값을 보였으며 비교적 단주기 구간인 B/L 1~4 에서는 0.2~0.35 사이의 값을 가졌으며 5~10사이구간에서는 0.35~0.34의 값을 보이고 있다. 이 같은 결과는 와의 간섭이 가장 활발하게 나타난 결과로 보인다. 그리고 요철 3단면에서는 전면 돌출부 끝단에서의 활발한 와의 간섭을 관찰 할 수 있었다. 투과율은 세 단면 중 가장 높은 값의 투과율을 보이지만 B/L 3~4 구간에서 요철1 경우보다 낮은 값의 투과율을 보이고 있다. 결과에서 보듯이 도출부의 적절한 조합과 배치를 통해 언급한 연구목표(와의 생성과 간섭, 방파효율 개선)를 달성하였고 추후에 돌출부의 크기와 배치, 흘수의 영향, 수심의 영향 등을 고려한 연구가 진행된다면 더욱 우수한 단면형상을 개발 할 것이라 예상된다.

  • PDF

Investigation of Behaviours of Wall and Adjacent Ground Considering Shape of Geosynthetic Retaining Wall (보강토 옹벽의 형상을 고려한 벽체 및 인접지반 거동 연구)

  • Lee, Jong-Hyun;Oh, Dong-Wook;Kong, Suk-Min;Jung, Hyuk-Sang;Lee, Yong-Joo
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.1
    • /
    • pp.95-109
    • /
    • 2018
  • Recently, GRS (Geosynthetic Retaining Segmental) wall has been widely used as a method to replace concrete retaining wall because of its excellent structural stability and economic efficiency. It has been variously applied for foundation, slope, road as well as retaining wall. The GRS wall system, however, has a weak point that is serious crack of wall due to stress concentration at curved part of it. In this study, therefore, behaviour of GRS wall according to shape of it, shich has convex and concave, are analysed and compared using Finite Element analysis as the fundamental study for design optimization. Results including lateral deflection, settlements of ground surface and wall obtained from 2D FE analysis are compared between straight and curved parts from 3D FE analysis.

A Study on Taehwa River Red Tide Solution through Stream Flow (유수소통을 통한 태화강 적조해결 방안 연구)

  • Cho, Hong-Je;Yoon, Sung-Kyu
    • Journal of Wetlands Research
    • /
    • v.13 no.2
    • /
    • pp.363-375
    • /
    • 2011
  • Recently, Water quiality of urban river largely have gotten better by virtue of sewer pipe laying and sewage treatment plants construction. or the various contaminants which is flowed in into river have generated underwater ecosystem disturbance and red tide by lack of sewage and waste water disposal facilities. With tidal river, taehwa river of ulsan metropolitan city has large river width and gradual stream bed gradient at the dry and storage period. Moreover, the flow is paralyzed due to the bridge pier protection work, consist of the mat foundation which is about 1.2km from two bridge and the contaminant is accumulated. it is caused by of the red tide generated from the several years or it activates. In this study, When flow area is largest by changing independent footing of bridge pier of two bridges and using RMA2 model, we hydraulically analyzed a variable breadth of velocity and discharge. Consequently, flow rate increased the maximum 103%, discharge was exposed to increase the maximum 61%. Directly this cannot extinguish the red tide but suppresses the red tide occurrence or can reduce. And it is determined to prevent the depositioning of the contaminant and can control fundamentally the red tide occurrence cause.

Reinforced Effects of Soil-nailed Structures by a Vertical Coupling of a Exposed Nail at a Front (지반네일보강토체 전면부에서 노출된 지반네일의 연직 방향 연결에 의한 보강효과)

  • Kim, Joon-Seok
    • Journal of the Korean Geosynthetics Society
    • /
    • v.9 no.4
    • /
    • pp.1-7
    • /
    • 2010
  • The soil nailing method have been developed on the basis of experimental works as well as theoretical backgrounds. As for the experimental research works, most of the data have been measured during the application of load in service. However, not only the soil-nailed structure behavior in service but also the failure behavior of the structure are the major concerns to evaluate and even establish a design method of soil-nailed walls. In this paper for the apprehension of behavior in the soil-nailed structure which the front of nail is connected, a relatively large-scale experiment was carried out to figure out the failure behavior of soil-nailed wall. A number of data have been acquired and analysis.

  • PDF

A Fundamental Study on Reinforced Soil Slope with Improved Soil Facing (개량토 벽면공을 활용한 보강성토사면에 관한 기초적 연구)

  • Bhang, In-Hwang;Seo, Se-Gwan;Kim, Kwang-Leyol;Kim, You-Seong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.12 no.4
    • /
    • pp.35-44
    • /
    • 2013
  • This paper presents the slope wall technique using soil improvement material for reinforced soil slope through laboratory scale model tests, and verifies the experimental results comparing with numerical analysis. In additional, case study in field has performed to investigate the deformation of reinforced soil slope for 6 months. As a result of laboratory scale model test, numerical analysis, and case study, the reinforcement effect of the slope wall technique using soil improvement material is sufficient to be constructed as reinforced soil slope. The technique shows the stable ratio (0.4%) of horizontal to vertical deformation in the surface loading.

Bearing Characteristics of Micropile-raft by Failure Mode of Soil (지반파괴거동에 따른 마이크로파일-기초의 지지특성)

  • Hwang, Tae-Hyun;Shin, Jong-Ho;Huh, In-Goo;Kwon, Oh-Yeob
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.2
    • /
    • pp.13-25
    • /
    • 2015
  • With the increasing usages of micropile, several researchers have been studying the bearing characteristics of micropile or micropile-raft system. But most cases of research were focused on the bearing capacity of micropile-raft system on sand layer. And it was not considered that the bearing capacity of micropile-raft system was affected by the failure mode of soil and pile installation conditions. Thereby this study conducted the numerical analysis to estimate the bearing capacity of micropile-raft system on sand or silt layer with different shear failure mode. It was found that the bearing capacity of micropile-raft system installed in positive or negative angle was larger than that of the system installed in vertical angle, in the case of the sand layer undergoing the general shear failure. In the case of silt layer undergoing the punching shear failure, the bearing capacity of micropile-raft system installed only in negative angle was larger than that installed in vertical or positive angle. And the bearing capacity of foundation system in positive angle was similar to the vertical micropile-raft system.