• Title/Summary/Keyword: 전류효율

Search Result 1,851, Processing Time 0.03 seconds

Characterization of InAs Quantum Dots in InGaAsP Quantum Well Grown by MOCVD for 1.55 ${\mu}m$

  • Choe, Jang-Hui;Han, Won-Seok;Song, Jeong-Ho;Lee, Dong-Han
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.134-135
    • /
    • 2011
  • 양자점은 전자와 양공을 3차원으로 속박 시키므로 기존의 bulk나 양자우물보다 양자점을 이용한 레이저 다이오드의 경우 낮은 문턱 전류, 높은 미분이득 및 온도 안전성의 장점이 있을 거라 기대되고 있다. 그러나, 양자점은 낮은 areal coverage 때문에 높은 속박효율을 얻지 못하고 있다. 이러한 양자점의 문제점을 해결하기 위해 양자점을 양자우물 안에 성장시켜 운반자들의 포획을 향상시키는 방법들이 연구되고 있다. 양자우물 안에 양자점을 넣으면 양자우물이 운반자들의 포획을 증가 시키고, 열적 방출도 억제하여 온도 안정성이 향상 되는 것으로 알려져 있다. 광통신 대역의 1.3 ${\mu}m$ 경우, GaAs계를 이용하여 InAs 양자점을 strained InGaAs 박막을 우물층으로 한 dot-in-a-well 구조의 연구는 몇몇 보고된 바 있다. 그러나 InP계를 사용하는 1.55 ${\mu}m$ 대역에서 dot-in-a-well구조의 연구는 아직 미미하다. 본 연구에서는 유기 금속 화학 증착법(metal organic chemical vapor deposition)을 이용하여 InP 기판 위에 InAs 양자점을 자발성장법으로 성장하였으며 dot-in-a-well 구조에서 우물층으로 1.35 ${\mu}m$ 파장의 $In_{0.69}Ga_{0.31}As_{0.67}P_{0.33}$ (1.35Q)를, 장벽층으로는 1.1 ${\mu}m$ 파장의 $In_{0.85}Ga_{0.15}As_{0.32}P_{0.68}$(1.1Q)를 사용하였다. 양자우물층과 장벽층은 모두 InP 기판과 격자가 일치하는 조건으로 성장하였다. III족 원료로는 trimethylindium (TMI)와 trimethylgalium (TMGa)을 사용하였으며 V족 원료 가스로는 $PH_3$ 100%, $AsH_3$ 100%를, carrier gas로는 $H_2$를 사용하였다. InP buffer층의 성장 온도는 640$^{\circ}C$이며 양자점 성장 온도는 520$^{\circ}C$이다. 양자점 형성은 원자력간 현미경(Atomic force microscopy)를 이용하여 확인하였으며, 박막의 결정성은 쌍결정 회절분석(Double crystal x-ray deffractometry)를 이용하여 확인하였다. 확인된 성장 조건을 이용하여 양자점 시료를 성장하였으며 광여기분광법(Photoluminescence)을 이용하여 광특성을 분석하였다. Fig. 1은 dot in a barrier 와 dot-in-a-well 시료의 성장구조이다. Fig. 1(a)는 일반적인 dot-in-a-barrier 구조로 InP buffer층을 성장하고 1.1Q를 100 nm 성장한 후 양자점을 성장하였다. 그 후 1.1Q 100 nm와 InP 100 nm로 capping하였다. Fig. 1(b)는 dot-in-a-well 구조로 InP buffer층을 성장하고 1.1Q를 100 nm 성장 후 1.35Q 우물층을 4 nm 성장하였다. 그 위에 InAs 양자점을 성장하였다. 그 후에 1.35Q 우물층을 4 nm 성장하고 1.1Q 100 nm와 InP 100 nm로 capping하였다. Fig. 2는 dot-in-a-barrier 시료와 dot-in-a-well 시료의 상온 PL data이다. Dot-in-a-barrier 시료의 PL 파장은 1544 nm이며 반치폭은 79.70 meV이다. Dot-in-a-well 시료의 파장은 1546 nm이며 반치폭은 70.80 meV이다. 두 시료의 PL 파장 변화는 없으며, 반치폭은 dot-in-a-well 시료가 8.9 meV 감소하였다. Dot-in-a-well 시료의 PL peak 강도는 57% 증가하였으며 적분강도(integration intensity)는 45%가 증가하였다. PL 데이터에서 높은 에너지의 반치폭 변화는 없으며 낮은 에너지의 반치폭은 8 meV 감소하였다. 적분강도 증가에서 dot-in-a-well 구조가 dot-in-a-barrier 구조보다 전자-양공의 재결합이 증가한다는 것을 알 수 있으며, 반치폭 변화로부터 특히 높은 에너지를 갖는 작은 양자점에서의 재결합이 증가 된 것을 알 수 있다. 이는 양자우물이 장벽보다 전자-양공의 구속력을 증가시키기 때문에 양자점에 전자와 양공의 공급을 증가시키기 때문이다. 따라서 낮은 에너지를 가지는 양자점을 모두 채우고 높은 에너지를 가지는 양자점까지 채우게 되므로, 높은 에너지를 가지는 양자점에서의 전자-양공 재결합이 증가되었기 때문이다. 뿐만 아니라 파장 변화 없이 PL peak 강도와 적분강도가 증가하고 낮은 에너지 쪽의 반치폭이 감소한 것으로부터 에너지가 낮은 양자점보다는 에너지가 높은 양자점에서의 전자-양공 재결합율이 급증하였음을 알 수 있다. 우리는 이와 같은 연구에서 InP계를 이용해 1.55 ${\mu}m$에서도 dot in a well구조를 성장 하여 더 좋은 특성을 낼 수 있으며 앞으로 많은 연구가 필요할 것이라 생각한다.

  • PDF

Effect of Coolant on PEMFC Performance in Low Humidification Condition (저가습 조건에서 냉각 유체의 고분자전해질 연료전지에 대한 영향)

  • Lee, Hung-Joo;Song, Hyun-Do;Kwon, Jun-Taek;Kim, Jun-Bom
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.1
    • /
    • pp.25-30
    • /
    • 2007
  • Proton exchange membrane fuel cell(PEMFC) performance could be affected by various factors such as cell temperature, total pressure, partial pressure of reactants and relative humidity. Hydrogen ion is combined with water to form hydronium ion [$H_3O^+$] and pass through membrane resulting electricity generation. Cooling system is needed to remove heat and other uses on large scale fuel cell. In case that collant conductivity is increased, fuel cell performance could be decreased because produced electricity could be leaked through coolant. In this study, triple distilled water(TDW) and antifreeze solution containing ethylene glycol was used to observe resistance change. Resistance of TDW was taken 28 days to reach preset value, and effect on fuel cell operation was not observed. Resistance of antifreeze solution was not reached to preset value up to 48 days, but performance failure occurred presumably caused by bipolar plate junction resulting stoppage resistance experiment. Generally PEMFC humidification is performed near-saturated operating conditions at various temperatures and pressures, but non-humidifying condition could be applied in small scale fuel cell to improve efficiency and reduce system cost. However, it was difficult to operate large scale fuel cell without humidifying, especially higher than $50{\sim}60^{\circ}C$. In case of small flux such as 0.78 L/min, temperature difference between inlet and outlet was occurred larger than other cases resulting performance decrease. Non-humidifying performance experiments were done at various cell temperature. When both of anode and cathode humidification were removed, cell performance was strongly depended on cell operating temperature.

Effects of Sodium and Gallium on Characteristics of CIGS Thin Films and CdS/CIGS Solar Cells by Co-evaporation Method (Na확산과 Ga첨가에 따른 동시진공증발법으로 제조된 CIGS 박막과 CdS/CIGS 태양전지의 특성)

  • Kwon, S.H.;Lee, J.C.;Kang, K.H.;Kim, S.K.;Yoon, K.H.;Song, J.S.;Lee, D.Y.;Ahn, B.T.
    • Solar Energy
    • /
    • v.20 no.2
    • /
    • pp.43-54
    • /
    • 2000
  • We prepared and characterized $Cu(In_{1-x}Ga_x)Se_2$(CIGS) films using a elemental co-evaporation method for absorbing layer of high efficiency thin film solar cells. The CIGS films deposited on a soda-lime glass exhibited low resistivity because of higher carrier concentration. Na was accumulated at the CIGS surface and the 0 and Se were also accumulated at the surface, suggesting that oxidation is a driving force of Na accumulation. The structure of CIGS film was modified or a secondary phase was formed in the Cu-poor CIGS bulk films probably due to the incorporation of Na into Cu vacancy sites. As the Ga/(In+Ga) ratio increased, the diffraction peaks of $Cu(In_{1-x}Ga_x)Se_2$ films were shifted to larger angle and splitted, and the grain size of $Cu_{0.91}(In_{1-x}Ga_x)Se_2$ films became smaller. All $Cu_{0.91}(In_{1-x}Ga_x)Se_2$ films showed the p-type conductivity regardless of the Ga/(In+Ga) ratio. Ag/n-ZnO/i-ZnO/CdS/$Cu_{0.91}(In_{0.7}Ga_{0.3})Se_2$/Mo solar cells were fabricated. The currently best efficiency in this study was 14.48% for $0.18cm^2$ area ($V_{oc}=581.5mV,\;J_{sc}=34.88mA$, F.F=0.714).

  • PDF

The Comparison of Image Quality between Computed Radiography(CR) and Direct Digital Radiography(DDR) which Follows the Proper Exposure Conditions in General Photographing under the Digital Radiography(DR) (Digital Radiography 환경하에서 일반촬영시 적정 노출조건에 따른 CR과 DDR의 Image Quality 비교)

  • Kim, Jin-Bae;Kang, Chung-Hwan;Kang, Sung-Jin;Park, Soo-In;Park, Jong-Won;Kim, Yeong-Su;Kim, Seung-Sik
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.5 no.1
    • /
    • pp.64-77
    • /
    • 2002
  • DR has had an important fact not only in the department of radiology but also in productivity or work efficiency of a whole hospital. The environment of DR has more various parameter than CR, so it is able to supply high quality of medical services. The current environment of radiology department in each hospital has been changed from Film-Screen system to DR through Full-PACS. This hospital which uses Full-PACS became to study the proper condition of CR and DDR and how the image quality of them is expressed among general photographing systems in the DR environment. From this experiment, the image quality of DDR is better than CR under the same exposure condition. And in the DDR system, the score of image which uses AEC is a little higher than the score which doesn't use it. Especially it can be known that the function of AEC of DDR is useful to improve the image quality in the part of skull and chest. (The function of AEC : It is the tool that detects the ionized current of x-ray which goes through objects with using the ion chamber which is in the detector. Also it controls the examination of X-ray when the proper density is reached.) Because the proper degree of density can be represented by this system, the photographing can be taken much easily without consideration of the exposure condition with the thickness of various objects. From the result of this experiment, it can be known that the selection of proper exposure condition plays an important rule to gain good Image Quality. More researches will be necessary about DDR system which has potential ability in the future.

  • PDF

Electrochemical Characterization of Anti-Corrosion Film Coated Metal Conditioner Surfaces for Tungsten CMP Applications (텅스텐 화학적-기계적 연마 공정에서 부식방지막이 증착된 금속 컨디셔너 표면의 전기화학적 특성평가)

  • Cho, Byoung-Jun;Kwon, Tae-Young;Kim, Hyuk-Min;Venkatesh, Prasanna;Park, Moon-Seok;Park, Jin-Goo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.19 no.1
    • /
    • pp.61-66
    • /
    • 2012
  • Chemical Mechanical Planarization (CMP) is a polishing process used in the microelectronic fabrication industries to achieve a globally planar wafer surface for the manufacturing of integrated circuits. Pad conditioning plays an important role in the CMP process to maintain a material removal rate (MRR) and its uniformity. For metal CMP process, highly acidic slurry containing strong oxidizer is being used. It would affect the conditioner surface which normally made of metal such as Nickel and its alloy. If conditioner surface is corroded, diamonds on the conditioner surface would be fallen out from the surface. Because of this phenomenon, not only life time of conditioners is decreased, but also more scratches are generated. To protect the conditioners from corrosion, thin organic film deposition on the metal surface is suggested without requiring current conditioner manufacturing process. To prepare the anti-corrosion film on metal conditioner surface, vapor SAM (self-assembled monolayer) and FC (Fluorocarbon) -CVD (SRN-504, Sorona, Korea) films were prepared on both nickel and nickel alloy surfaces. Vapor SAM method was used for SAM deposition using both Dodecanethiol (DT) and Perfluoroctyltrichloro silane (FOTS). FC films were prepared in different thickness of 10 nm, 50 nm and 100 nm on conditioner surfaces. Electrochemical analysis such as potentiodynamic polarization and impedance, and contact angle measurements were carried out to evaluate the coating characteristics. Impedance data was analyzed by an electrical equivalent circuit model. The observed contact angle is higher than 90o after thin film deposition, which confirms that the coatings deposited on the surfaces are densely packed. The results of potentiodynamic polarization and the impedance show that modified surfaces have better performance than bare metal surfaces which could be applied to increase the life time and reliability of conditioner during W CMP.

The Study on New Radiating Structure with Multi-Layered Two-Dimensional Metallic Disk Array for Shaping flat-Topped Element Pattern (구형 빔 패턴 형성을 위한 다층 이차원 원형 도체 배열을 갖는 새로운 방사 구조에 대한 연구)

  • 엄순영;스코벨레프;전순익;최재익;박한규
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.7
    • /
    • pp.667-678
    • /
    • 2002
  • In this paper, a new radiating structure with a multi-layered two-dimensional metallic disk array was proposed for shaping the flat-topped element pattern. It is an infinite periodic planar array structure with metallic disks finitely stacked above the radiating circular waveguide apertures. The theoretical analysis was in detail performed using rigid full-wave analysis, and was based on modal representations for the fields in the partial regions of the array structure and for the currents on the metallic disks. The final system of linear algebraic equations was derived using the orthogonal property of vector wave functions, mode-matching method, boundary conditions and Galerkin's method, and also their unknown modal coefficients needed for calculation of the array characteristics were determined by Gauss elimination method. The application of the algorithm was demonstrated in an array design for shaping the flat-topped element patterns of $\pm$20$^{\circ}$ beam width in Ka-band. The optimal design parameters normalized by a wavelength for general applications are presented, which are obtained through optimization process on the basis of simulation and design experience. A Ka-band experimental breadboard with symmetric nineteen elements was fabricated to compare simulation results with experimental results. The metallic disks array structure stacked above the radiating circular waveguide apertures was realized using ion-beam deposition method on thin polymer films. It was shown that the calculated and measured element patterns of the breadboard were in very close agreement within the beam scanning range. The result analysis for side lobe and grating lobe was done, and also a blindness phenomenon was discussed, which may cause by multi-layered metallic disk structure at the broadside. Input VSWR of the breadboard was less than 1.14, and its gains measured at 29.0 GHz. 29.5 GHz and 30 GHz were 10.2 dB, 10.0 dB and 10.7 dB, respectively. The experimental and simulation results showed that the proposed multi-layered metallic disk array structure could shape the efficient flat-topped element pattern.

Longest First Binary Search on Prefix Length for IP Address Lookup (최장 길이 우선 검색에 기초한 프리픽스 길이에 따른 이진 IP 검색 구조)

  • Chu Ha-Neul;Lim Hye-Sook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.8B
    • /
    • pp.691-700
    • /
    • 2006
  • Based on the destination IP address of incoming packets, the Internet routers determine next hops and forward packets toward final destinations through If address lookup. The bandwidth of communication links increases exponentially fast as well as the routing table size grows significant as the number of single host networks attached to the Internet increases. Since packets should be processed at wire-speed, the increased link speed reduces the processing time of a packet in routers, and hence more efficient and fast IP address lookup algorithms and architectures are required in the next generation routers. Most of the previous IP lookup schemes compare routing prefixes of shorter length first with a given input IP address. Since IP address lookup needs to find the most specific route of the given input, search continues until the longest matched prefix is found while it keeps remembering the current test matching prefix. In this paper, based on binary search on prefix length, we proposed a new IP address lookup algorithm which compares longer prefixes first. The proposed scheme is consisted of multiple tries with prefixes on leaves only. The trie composed of the longest prefixes is primarily searched whether there is a match with the given input. This processing is repeated for the trio of the next longer prefixes until there finds a match. Hence the proposed algorithm provides the fast search speed. The proposed algorithm also provides the incremental update of prefixes while the previous binary search on length scheme does not provide the incremental update because of pre-processing requirement. In this paper, we performed extensive simulations and showed the performance comparisons with related works.

Study on the channel of bipolar plate for PEM fuel cell (고분자 전해질 연료전지용 바이폴라 플레이트의 유로 연구)

  • Ahn Bum Jong;Ko Jae-Churl;Jo Young-Do
    • Journal of the Korean Institute of Gas
    • /
    • v.8 no.2 s.23
    • /
    • pp.15-27
    • /
    • 2004
  • The purpose of this paper is to improve the performance of Polymer electrolyte fuel cell(PEMFC) by studying the channel dimension of bipolar plates using commercial CFD program 'Fluent'. Simulations are done ranging from 0.5 to 3.0mm for different size in order to find the channel size which shoves the highst hydrogen consumption. The results showed that the smaller channel width, land width, channel depth, the higher hydrogen consumption in anode. When channel width is increased, the pressure drop in channel is decreased because total channel length Is decreased, and when land width is increased, the net hydrogen consumption is decreased because hydrogen is diffused under the land width. It is also found that the influence of hydrogen consumption is larger at different channel width than it at different land width. The change of hydrogen consumption with different channel depth isn't as large as it with different channel width, but channel depth has to be small as can as it does because it has influence on the volume of bipolar plates. however the hydrogen utilization among the channel sizes more than 1.0mm which can be machined in reality is the most at channel width 1.0, land width 1.0, channel depth 0.5mm and considered as optimum channel size. The fuel cell combined with 2cm${\times}$2cm diagonal or serpentine type flow field and MEA(Membrane Electrode Assembly) is tested using 100W PEMFC test station to confirm that the channel size studied in simulation. The results showed that diagonal and serpentine flow field have similarly high OCV and current density of diagonal (low field is higher($2-40mA/m^2$) than that of serpentine flow field under 0.6 voltage, but the current density of serpentine type has higher performance($5-10mA/m^2$) than that of diagonal flow field under 0.7-0.8 voltage.

  • PDF

Developed an output device for high-frequency cosmetic medical equipment using micro multi-needle (마이크로 멀티니들을 이용한 고주파 피부미용 의료기기를 위한 출력 장치 개발)

  • Kim, Jun-tae;Joo, Kyu-tai;Cha, Eun Jong;Kim, Myung-mi;Jeong, Jin-hyoung
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.14 no.5
    • /
    • pp.394-402
    • /
    • 2021
  • The entry of an aging society and the extension of human life expectancy, the increasing interest in women's social advancement and men's appearance, and the natural interest in K-culture through media media, while receiving worldwide attention, Focus on K-Bueaty. Recently, looking at the occupation of the medical tourism field, in the case of aesthetic medicine tourism such as molding and dermatology, it has gained popularity not only in Asia such as China and Japan, but also in North America and Europe. The first external confirmation of human aging is the wrinkles on the skin of the face. Clean, wrinkle-free, elastic and healthy skin is a desire of most people. Skin condition and condition such as focused ultrasonic stimulation (HIFU: High Intensity Focused Utrasound) and low frequency, high frequency (RF: Radio Frequency), galvanic therapy using microcurrent, cryotherapy using rapid cooling, etc. Depending on the method of management, the effect of the treatment differs depending on the output and the stimulation site, etc., even in the treatment of medical equipment and beauty equipment using the same mechanism. In this research, in order to develop invasive high-frequency dermatological devices using a large number of beauty medical devices and microneedles of beauty devices, the international standards IEC 60601-2 (standards for individual medical devices) and MFDS (Ministry of) We designed and developed a high-frequency output device in compliance with the high-frequency stimulation standard announced in the Food and Drug Safety (Ministry of Food and Drug Safety). The circuit design consists of an amplifier (AMP: Amplifier) using Class-A Topology and a power supply device using Half-Bridge Topology. As a result of measuring the developed high-frequency output device, an average efficiency of 63.86% was obtained, and the maximum output was measured at 116.7W and 50.67dBm.

Synthesis and Photovoltaic Properties of New π-conjugated Polymers Based on 2,3-dimethyl-5,8-dithiophen-2-yl-quinoxaline (2,3-Dimethyl-5,8-dithiophen-2-yl-quinoxaline을 기본 골격으로 한 새로운 고분자 물질의 합성 및 광전변환특성)

  • Shin, Woong;Park, Jeong Bae;Park, Sang Jun;Jo, Mi Young;Suh, Hongsuk;Kim, Joo Hyun
    • Applied Chemistry for Engineering
    • /
    • v.22 no.1
    • /
    • pp.15-20
    • /
    • 2011
  • Poly[2,3-dimethyl-5,8-dithiophene-2-yl-quinoxaline-alt-9,9-dihexyl-9H-fluorene] (PFTQT) and poly[2,3-dimethyl-5,8-dithiophen-2-yl-quinoxaline-alt-10-hexyl-10H-phenothiazine (PPTTQT) based on 2,3-dimethyl-5,8-dithiophen-2-yl-quinoxaline weresynthesized by Suzuki coupling reaction. All polymers were soluble in common organic solvents such as chloroform, chlorobenzene, o-dichlorobenzene, tetrahydrofuran (THF) and toluene. The maximum absorption wavelength and band gap of PFTQT were 440 nm and 2.30 eV, and PPTTQT were 445 nm and 2.23 eV, respectively. The HOMO and LUMO energy level of PFTQT were -6.05 and -3.75 eV, and PPTTQT were -5,89 and -3.66 eV, respectively. The organic photovoltaic devices based on the blend of polymer and PCBM (1 : 2 by weight ratio) were fabricated. Efficiencies of devices were 0.24% (PFTQT) and 0.16% (PPTTQT), respectively. The short circuit current density ($J_{sc}$), fill factor (FF), and open circuit voltage ($V_{oc}$) of the device with PFTQT were $0.97mA/cm^2$, 29% and 0.86 V, and the device based on PPTTQT were $0.80mA/cm^2$, 28% and 0.71 V, 31% and 0.71 V, respectively, under air mass (AM) 1.5 G and 1 sun condition ($100mA/cm^2$).