• Title/Summary/Keyword: 전류보드 CMOS

Search Result 5, Processing Time 0.021 seconds

Implementation of Ternary Valued Adder and Multiplier Using Current Mode CMOS (전류모드 CMOS에 의한 3치 가산기 및 승산기의 구현)

  • Seong, Hyeon-Kyeong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.9
    • /
    • pp.1837-1844
    • /
    • 2009
  • In this paper, the circuit of 2 variable ternary adder and multiplier circuit using current mode CMOS are implemented. The presented ternary adder circuit and multiplier circuit using current mode CMOS are driven the voltage levels. We show the characteristics of operation for these circuits simulated by HSpice. These circuits are simulated under $0.18{\mu}m$ CMOS standard technology, $5{\mu}A$ unit current in $0.54{\mu}m/0.18{\mu}m$ ratio of NMOS length and width, and $0.54{\mu}m/0.18{\mu}m$ ratio of PMOS length and width, and 2.5V VDD voltage, MOS model Level 47 using HSpice. The simulation results show the satisfying current characteristics. The simulation results of current mode ternary adder circuit and multiplier circuit show the propagation delay time $1.2{\mu}s$, operating speed 300KHz, and consumer power 1.08mW.

LED driver IC design for BLU with current compensation and protection function (전류보상 및 보호 기능을 갖는 BLU용 LED Driver IC설계)

  • Lee, Seung-Woo;Lee, Jung-Gi;Kim, Sun-Yeob
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.10
    • /
    • pp.1-7
    • /
    • 2020
  • In recent years, as LED display systems are actively spread, study on effective control methods for an LED driver for driving the systems has been in progress. The most representative among them is the uniform brightness control method for the LED driver channel. In this paper, we propose an LED driver IC for BLU with current compensation and system protection functions to minimize channel luminance deviation. It is designed for current accuracy within ±3% between channels and a channel current of 150 mA. In order to satisfy the design specifications, the channel amplifier offset was canceled out by a chopping operation using a channel-driving PWM signal. Also, a pre-charge function was implemented to minimize the fast operation speed and luminance deviation between channels. LED error (open, short), switch TR short detection, and operating temperature protection circuits were designed to protect the IC and BLU systems. The proposed IC was fabricated using a Magnachip 0.35-um CMOS process and verified using Cadence and Synopsys' Design Tool. The fabricated LED driver IC has current accuracy within ±1.5% between channels and 150-mA channel output characteristics. The error detection circuits were verified by a test board.

900MHz RFID Passive Tag Frontend Design and Implementation (900MHz 대역 RFID 수동형 태그 전치부 설계 및 구현)

  • Hwang, Ji-Hun;Oh, Jong-Hwa;Kim, Hyun-Woong;Lee, Dong-Gun;Roh, Hyoung-Hwan;Seong, Yeong-Rak;Oh, Ha-Ryoung;Park, Jun-Seok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.7B
    • /
    • pp.1081-1090
    • /
    • 2010
  • $0.18{\mu}m$ CMOS UHF RFID tag frontend is presented in this paper. Several key components are highlighted: the voltage multiplier based on the threshold voltage terminated circuit, the demodulator using current mode, and the clock generator. For standard compliance, all designed components are under the EPC Global Class-1 Generation-2 UHF RFID protocol. Backscatter modulation uses the pulse width modulation scheme. Overall performance of the proposed tag chip was verified with the evaluation board. Prototype Tag Chip dimension is neary 0.77mm2 ; According to the simulation results, the reader can successfully interrogate the tag within 1.5m. where the tag consumes the power about $71{\mu}W$.

Design and Implementation of Low Power Touch Screen Controller for Mobile Devices (모바일용 저전력 터치 스크린 제어 회로 설계 및 구현)

  • Park, Sang-Bong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.6
    • /
    • pp.279-283
    • /
    • 2012
  • In is paper, we design and implement the low power, high speed touch screen controller that calculates and outputs the coordinate of touch point on the touch screen of mobile devices. The system clock is 10HMz, the number of input channels is 21, standby current is $20{\mu}A$, dynamic range of input is 140pF~400pF and the response time is 0.1ms/frame. It contains the power management unit for low power, automatic impedance calibration unit in order to adapt to humidity, temperature and evaluation board, adjacent key and pattern interference suppression unit, serial interface unit of I2C and SPI. The function and performance is verified by using FPGA and $0.18{\mu}m$ CMOS standard process. The implemented touch screen is designed for using in the double layer ITO(Indium Thin Oxide) module with diamond pattern and single layer ITO module for cost-effective which are applied to mobile phone or smart remote controller.

Fractional-N PLL Frequency Synthesizer Design (Fractional-N PLL (Phase-Locked Loop) 주파수 합성기 설계)

  • Kim Sun-Cheo;Won Hee-Seok;Kim Young-Sik
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.7 s.337
    • /
    • pp.35-40
    • /
    • 2005
  • This paper proposes a fractional-N phase-locked loop (PLL) frequency synthesizer using the 3rd order ${\Delta}{\sum}$ modulator for 900MHz medium speed wireless link. The LC voltage-controlled oscillator (VCO) is used for the good phase noise property. To reduce the lock-in time, a charge pump has been developed to control the pumping current according to the frequency steps and the reference frequency is increased up to 3MHz. A 36/37 fractional-N divider is used to increase the reference frequency of the phase frequency detector (PFD) and to reduce the minimum frequency step simultaneously. A 3rd order ${\Delta}{\sum}$ modulator has been developed to reduce the fractional spur VCO, Divider by 8 Prescaler, PFD and Charge pump have been developed with 0.25um CMOS, and the fractional-N divider and the third order ${\Delta}{\sum}$ modulator have been designed with the VHDL code, and they are implemented through the FPGA board of the Xilinx Spartan2E. The measured results show that the output power of the PLL is about -lldBm and the phase noise is -77.75dBc/Hz at 100kHz offset frequency. The minimum frequency step and the maximum lock-in time are 10kHz and around 800us for the maximum frequency change of 10MHz, respectively.