• Title/Summary/Keyword: 전력 할당 기법

Search Result 173, Processing Time 0.044 seconds

A Simple Bit Allocation Scheme Based on Grouped Sub-Channels for V-BLAST OFDM Systems (V-BLAST OFDM 시스템을 위한 그룹화된 부채널 기반의 간단한 형태의 비트 할당 기법)

  • Park Dae-Jin;Yang Suck-Chel;Kim Jong-Won;Yoo Myung-Sik;Lee Won-Cheol;Shin Yo-An
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.7C
    • /
    • pp.680-690
    • /
    • 2006
  • In this paper, we present a bit allocation scheme based on grouped sub-channels for MIMO-OFDM (Multiple Input Multiple Output-Orthogonal Frequency Division Multiplexing) systems using V-BLAST (Vertical-Bell laboratories LAyered Space-Time) detector. A fully adaptive modulation and coding scheme may provide optimal performance in the MIMO-OFDM systems, however it requires excessive feedback information. Instead, SBA (Simplified Bit Allocation) scheme for reduction of feedback overhead, which applies the same modulation and coding to all the good sub-channels, may be considered. The proposed scheme in this paper named SBA-GS (Simplified Bit Allocation based on Grouped Sub-channels) groups sub-channels and assigns the same modulation and coding to the set of selected sub-channel groups. Simulation results show that the proposed scheme achieves comparable bit error rate performance of the conventional SBA scheme, while significantly reducing the feedback overhead in multipath channels with small delay spreads.

Design of User Clustering and Robust Beam in 5G MIMO-NOMA System Multicell (5G MIMO-NOMA 시스템 멀티 셀에서의 사용자 클러스터링 및 강력한 빔 설계)

  • Kim, Jeong-Su;Lee, Moon-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.1
    • /
    • pp.59-69
    • /
    • 2018
  • In this paper, we present a robust beamforming design to tackle the weighted sum-rate maximization (WSRM) problem in a multicell multiple-input multiple-output (MIMO) - non-orthogonal multipleaccess (NOMA) downlink system for 5G wireless communications. This work consider the imperfectchannel state information (CSI) at the base station (BS) by adding uncertainties to channel estimation matrices as the worst-case model i.e., singular value uncertainty model (SVUM). With this observation, the WSRM problem is formulated subject to the transmit power constraints at the BS. The objective problem is known as on-deterministic polynomial (NP) problem which is difficult to solve. We propose an robust beam forming design which establishes on majorization minimization (MM) technique to find the optimal transmit beam forming matrix, as well as efficiently solve the objective problem. In addition, we also propose a joint user clustering and power allocation (JUCPA) algorithm in which the best user pair is selected as a cluster to attain a higher sum-rate. Extensive numerical results are provided to show that the proposed robust beamforming design together with the proposed JUCPA algorithm significantly increases the performance in term of sum-rate as compared with the existing NOMA schemes and the conventional orthogonal multiple access (OMA) scheme.

Multiple Supply Voltage Scheduling Techniques for Minimal Energy Consumption (에너지 소모 최소화를 위한 다중 전압 스케줄링 기법)

  • Jeong, Woo-Sung;Shin, Hyun-Chul
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.9
    • /
    • pp.49-57
    • /
    • 2009
  • In this paper, we propose a multiple voltage scheduling method which reduces energy consumption considering both timing constraints and resource constraints. In the other multiple voltage scheduling techniques, high voltage is assigned to operations in the longest path and low voltage is assigned to operations that are not on the longest path. However, in those methods, voltages are assigned to specific operations restrictively. We use a simulated annealing technique, in which several voltages are assigned to specific operations flexibly regardless of whether they are on the longest path. In this paper, a post processing algorithm is proposed to further reduce the energy consumption. In some cases, designers may want to reduce the level shifters. To make tradeoff between the total energy and the number (or energy) of level shifters weighted term can be added to the cost function. When the level shifter energy is weighted six times, for example, the number of level shifters is reduced by about 24% and their energy consumption is reduced by about 20%.

Study on the Spectrum Sharing between IMT and FSS Systems Considering MIMO SDMA Interference Mitigation Technique in C Band (C 대역에서 MIMO SDMA 간섭경감기법을 고려한 IMT와 FSS 시스템간 주파수 공유 연구)

  • Kang, Young-Heung
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.5
    • /
    • pp.587-595
    • /
    • 2010
  • Spectrum sharing between wireless systems becomes a critical issue clue to emerging new technologies and spectrum shortage. Recently, IMT system has been allocated in the same frequency C band (3400-4200MHz) along with FSS services on co-primary basis which means that harmful. interference probability may be inspired. In this paper, to estimate the spectrum sharing between IMT and FSS systems, I propose the minimum separation distances as a sharing criterion of I/N=-10dB using the interference to noise ratio(I/N) received at the reference FSS earth station from IMT multiple base station. Especially, same results imply that I/N values can be greatly reduced with MMO SDMA interference mitigation technique of IMT base station so that FSS and IMT systems can co-exist in the sam e frequency with appropriate separation distance.

CPWL : Clock and Page Weight based Disk Buffer Management Policy for Flash Memory Systems

  • Kang, Byung Kook;Kwak, Jong Wook
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.2
    • /
    • pp.21-29
    • /
    • 2020
  • The use of NAND flash memory is continuously increased with the demand of mobile data in the IT industry environment. However, the erase operations in flash memory require longer latency and higher power consumption, resulting in the limited lifetime for each cell. Therefore, frequent write/erase operations reduce the performance and the lifetime of the flash memory. In order to solve this problem, management techniques for improving the performance of flash based storage by reducing write and erase operations of flash memory with using disk buffers have been studied. In this paper, we propose a CPWL to minimized the number of write operations. It is a disk buffer management that separates read and write pages according to the characteristics of the buffer memory access patterns. This technique increases the lifespan of the flash memory and decreases an energy consumption by reducing the number of writes by arranging pages according to the characteristics of buffer memory access mode of requested pages.

Mileage-based Asymmetric Multi-core Scheduling for Mobile Devices (모바일 디바이스를 위한 마일리지 기반 비대칭 멀티코어 스케줄링)

  • Lee, Se Won;Lee, Byoung-Hoon;Lim, Sung-Hwa
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.26 no.5
    • /
    • pp.11-19
    • /
    • 2021
  • In this paper, we proposed an asymmetric multi-core processor scheduling scheme which is based on the mileage of each core. We considered a big-LITTLE multi-core processor structure, which consists of low power consuming LITTLE cores with general performance and high power consuming big cores with high performance. If a task needs to be processed, the processor decides a core type (big or LITTLE) to handle the task, and then investigate the core with the shortest mileage among unoccupied cores. Then assigns the task to the core. We developed a mileage-based balancing algorithm for asymmetric multi-core assignment and showed that the proposed scheduling scheme is more cost-effective compared to the traditional scheme from a management perspective. Simulation is also conducted for the purpose of performance evaluation of our proposed algorithm.

SSD-based RAID-6 System Architecture for Reliability and Performance Enhancement (신뢰성 향상과 성능개선을 위해 다양한 Erasure 코드를 적용한 SSD 기반 RAID-6 시스템 구조)

  • Song, Jae-Seok;Huh, Joon-Moo;Yang, Yu-Seok;Kim, Deok-Hwan
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.47 no.6
    • /
    • pp.47-56
    • /
    • 2010
  • HDD-based RAIDs have been used in high-capacity storage systems for traditional data server. However, their data reliability are relatively low and they consume lots of power since hard disk drive is weak on shock and its power consumption is high due to frequent spindle motor operation. Therefore, this paper presents new SSD based RAID system architecture using various erasure codes. The proposed methode applys Reed-Solomon, EVENODD, and Liberation coding schemes onto file system level and device driver level, respectively. Besides, it uses data allocation method to minimize the side effect of reducing the lifespan of SSD. Detail experimental results show that Liberation code increase wear-leveling rates of SSD based RAID-6 more than other codes. The SSD based RAID system applying erasure codes at the device driver level shows better performance than that at the file system level. I/O performance of RAID-6 system using SSD is 4.5%~8.5% higher than that of using HDD and the power consumption of the RAID system using SSD is 18%~40% less than that of using HDD.

QoS-Aware Call Admission Control for Multimedia over CDMA Network (CDMA 무선망상의 멀티미디어 서비스를 위한 QoS 제공 호 제어 기법)

  • 정용찬;정세정;신지태
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.40 no.12
    • /
    • pp.106-115
    • /
    • 2003
  • Diverse multimedia services will be deployed at hand on 3G-and-beyond multi-service CDMA systems in order to satisfy different quality of service (QoS) according to traffic types. In order to use appropriate resources efficiently the call admission control (CAC) as a major resource control mechanism needs to be used to take care of efficient utilization of limited resources. In this paper, we propose a QoS-aware CAC (QCAC) that is enabled to provide service fairness and service differentiation in accordance with priority order and that applies the different thresholds in received power considering different QoS requirements such as different bit error rates (BER) when adopting total received power as the ceil load estimation. The proposed QCAC calculates the different thresholds of the different traffic types based on different required BER applies it for admission policy, and can get service fairness and differentiation in terms of call dropping probability as a main performance metric. The QCAC is aware of the QoS requirement per traffic type and allows admission discrimination according to traffic types in order to minimize the probability of QoS violation. Also the CAC needs to consider the resource allocation schemes such as complete sharing (CS), complete partitioning (CP), and priority sharing(PS) in order to provide fairness and service differentiation among traffic types. Among them, PS is closely related with the proposed QCAC having differently calculated threshold per each traffic type according to traffic priority orders.

A New Incentive Based Bandwidth Allocation Scheme For Cooperative Non-Orthogonal Multiple Access (협력 비직교 다중 접속 네트워크에서 새로운 인센티브 기반 주파수 할당 기법)

  • Kim, Jong Won;Kim, Sung Wook
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.10 no.6
    • /
    • pp.173-180
    • /
    • 2021
  • Non Orthogonal Multiple Access (NOMA) is a technology to guarantee the explosively increased Quality of Service(QoS) of users in 5G networks. NOMA can remove the frequent orthogonality in Orthogonal Multiple Access (OMA) while allocating the power differentially to classify user signals. NOMA can guarantee higher communication speed than OMA. However, the NOMA has one disadvantage; it consumes a more energy power when the distance increases. To solve this problem, relay nodes are employed to implement the cooperative NOMA control idea. In a cooperative NOMA network, relay node participations for cooperative communications are essential. In this paper, a new bandwidth allocation scheme is proposed for cooperative NOMA platform. By employing the idea of Vickrey-Clarke-Groves (VCG) mechanism, the proposed scheme can effectively prevent selfishly actions of relay nodes in the cooperative NOMA network. Especially, base stations can pay incentives to relay nodes as much as the contributes of relay nodes. Therefore, the proposed scheme can control the selfish behavior of relay nodes to improve the overall system performance.

A Study on a Visible Light Communication using LED in Under-water Environment (LED조명을 이용한 수중환경에서의 VLC 연구)

  • Jung, Hui-Sok;Yang, Yeon-Mo;Huh, Kyung-Moo
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.5
    • /
    • pp.1-6
    • /
    • 2011
  • LED(Light Emitting Diode) components have advantages of longer lifetime, lower power consumption and easy-to-control, compare to normal lamp and fluorescent light, according to the development of recent technologies. Thus, lots of illuminations which utilize LED components could be used. Recently, Visible Light Communication(VLC) which is a part of communication technologies, utilizing high speed response characteristic of LED components, started receiving public attention. In case of VLC, there is no need of frequency allocation due to no use of radio, but also no interference exists during data transmission, much different in ISM((Industrial Scientific Medical band). This is the reason why a lot of research results about VLC are becoming issued. In this paper, a survey of feasibility for using VLC utilizing an original LED illumination for underwater applications has been done and a primitive possibility of its application has been examined.