• Title/Summary/Keyword: 전력 절감 알고리즘

Search Result 128, Processing Time 0.024 seconds

The IEEE 802.15.4e based Distributed Scheduling Mechanism for the Energy Efficiency of Industrial Wireless Sensor Networks (IEEE 802.15.4e DSME 기반 산업용 무선 센서 네트워크에서의 전력소모 절감을 위한 분산 스케줄링 기법 연구)

  • Lee, Yun-Sung;Chung, Sang-Hwa
    • Journal of KIISE
    • /
    • v.44 no.2
    • /
    • pp.213-222
    • /
    • 2017
  • The Internet of Things (IoT) technology is rapidly developing in recent years, and is applicable to various fields. A smart factory is one wherein all the components are organically connected to each other via a WSN, using an intelligent operating system and the IoT. A smart factory technology is used for flexible process automation and custom manufacturing, and hence needs adaptive network management for frequent network fluctuations. Moreover, ensuring the timeliness of the data collected through sensor nodes is crucial. In order to ensure network timeliness, the power consumption for information exchange increases. In this paper, we propose an IEEE 802.15.4e DSME-based distributed scheduling algorithm for mobility support, and we evaluate various performance metrics. The proposed algorithm adaptively assigns communication slots by analyzing the network traffic of each node, and improves the network reliability and timeliness. The experimental results indicate that the throughput of the DSME MAC protocol is better than the IEEE 802.15.4e TSCH and the legacy slotted CSMA/CA in large networks with more than 30 nodes. Also, the proposed algorithm improves the throughput by 15%, higher than other MACs including the original DSME. Experimentally, we confirm that the algorithm reduces power consumption by improving the availability of communication slots. The proposed algorithm improves the power consumption by 40%, higher than other MACs.

Communication Module Selection Algorithm for Energy Saving of Smartphone (스마트폰 에너지 절감을 위한 통신모듈 선택 알고리즘)

  • Lee, Chang-Moo;Lee, Seung-Jae;Choi, Deok-Jai
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.5
    • /
    • pp.22-31
    • /
    • 2012
  • A Smartphone is an intelligent device combined mobile phone and pc's support functions, and can perform multiple functions to satisfy the demands of users. It has excellent processing power and communication modules(DMB, Wi-Fi, Bluetooth, NFC etc) to carry out the demands of users. But continuous using of battery power on processor and equipped modules causes acceleration of battery consumption. This means that effective power management in devices like smartphone is important. Therefore, the management of power consumption on system execution and communication module is a serious issue in this field of study. In this paper, we would like to propose a communication module selection algorithm based on energy consumption parameter of each communication module and data transfer time. Our scheme automatically select appropriate communication system to reduce high energy consumption on bluetooth sleep mode so that this scheme is more efficient and effective thus improving user convenience in longer usage time. Experimental results showed the 20% energy saving.

EM Algorithm based Air Flow and Power Data classification Analysis (EM 알고리즘기반의 공기 유량 및 전력 데이터 분류 분석)

  • Shim, Jae-Ryong;Noh, Young-Bin;Jung, Hoe-kyung;Kim, Yong-Chul
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.551-553
    • /
    • 2016
  • Since air compressor, as an essential equipment used in the factory and plant operations, accounts for around 20% of the total domestic electricity consumption, a real time sensor data monitoring based analysis for electricity consumption reduction is important. In particular, flow rates and pressures of these monitored variables has a direct correlation with the power consumption. This paper proposes a method to identify if the measurement error of the flow rate sensor comes from the sensor measurement limit through bivariate classification analysis of the flow rate and power using the EM (Expectation and Maximization) Algorithm and show how to enable more accurate analysis by the correlation between the flow rate and power on the right-censored data.

  • PDF

Development of Home Electrical Power Monitoring System and Device Identification Algorithm (가정용 전력 모니터링 시스템 및 장치식별 알고리즘 개발)

  • Park, Sung-Wook;Seo, Jin-Soo;Wang, Bo-Hyeun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.4
    • /
    • pp.407-413
    • /
    • 2011
  • This paper presents an electrical power monitoring system for home energy management and an automatic appliance-identification algorithm based on the electricity-usage patterns collected during the monitoring tests. This paper also discusses the results of the field tests of which the proposed system was voluntarily deployed at 13 homes. The proposed monitoring system periodically measures the amount of power consumption of each appliance with a pre-specified time interval and effectively displays the essential information provided by the monitored data which is required users to know in order to save power consumption. Regarding the field tests of the monitoring system, the households responded that the system was useful in saving electricity and especially the electricity-usage patterns per appliances. They also considered that the predicted amount of the monthly power consumption was effective. The proposed appliance-identification algorithm uses 4 patterns: Zero-Crossing Rate(ZC), Variation of On State(VO), Slope of On State(SO) and Duty Cycle(DC), which are applied over the 2 hour interval with 25% of it on state, and it yielded 82.1% of success rate in identifying 5 kinds of appliances: refrigerator, TV, electric rice-cooker, kimchi-refrigerator and washing machine.

A Study on Distributed Power Control for Energy Efficiency in Multicast Routing (멀티캐스트 라우팅에서의 전력 분산 제어(DPC)에 관한 연구)

  • Chung, Hyun-Gi;Yang, Seung-In
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.10 s.113
    • /
    • pp.985-992
    • /
    • 2006
  • The classic routing algorithms try to minimize the number of hops to reach a destination. In our DPC(Distributed Power Control) this hop-by-hop power level selection is also used to select the path guaranteeing low energy consumption. The main goal is to realize a dynamic protocol able to be aware of mobility and to automatically set security threshold in order to get the best performance in every situation. In conclusion, the simulation DPC has improved energy gain of the AMRIS routing algorithm at the narrow area, and ODMRP routing algorithm has improved energy gain at the wide area.

A Study of Regeneration Breaking Control Algorithm for Wounded-field Synchronous Motor Drive (대용량 동기 발전 전동기의 회생 제동 제어 알고리즘에 관한 연구)

  • Ryu, Ho-Seon;Lee, Joo-Hyun;Lim, Ik-Hun;Park, Yo-Jip;Kang, Youn-Jong;Kim, Jang-Mok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.2
    • /
    • pp.104-112
    • /
    • 2006
  • SFC(Static Frequence Converter)system has come to be used as drive large synchronous machine in many industry applications. Many papers have been presented on the control algorithm of SFC system, not the acceleration and start-up but the rated speed operation with line connection and the braking operation with regeneration which is used in the industry. Among this, this paper presents the regeneration breaking control algorithm for a large synchronous machine using SFC system. The results of experiment show that the proposed algorithm is proper and effective.

Experimental Test Results of Nine Scheduling Operational Modes of PV and Battery Hybrid System for the Development of Automatic Control Algorithm for Continual Operation without being shut-downed (태양광 배터리 Hybrid 전력공급시스템 9가지 운전 모드 시험결과 및 무고장 연속 운전을 위한 자동제어 알고리즘 개발)

  • Song, Taek Ho;Yang, Seung Kwon;Kim, Minjeong
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.1
    • /
    • pp.25-32
    • /
    • 2019
  • K-BEMS System was introduced to reduce peak load and to save total energy of the 200 buildings that KEPCO headquarter and branch offices use. And K-BEMS system is composed of PV, battery, and hybrid PCS. KEPCO research institute has carried out this K-BEMS research project for 3 years since January 2016. In this paper, the results of the project are shown. 9 modes of test results of K-BEMS system and are operational problems were analyzed. And measures to cure the trouble are also suggested. Batteries are operated more than 20% of SOC, and less than 20% of SOC battery protection switches are automatically shutting down the system and the system no longer respond to EMS, ending the supply of PV, and so therefore to continue the PV power supply it was turn out to be necessary that the EMS should automatically change its policy to change PV only supply mode automatically when the Battery Switch automatically operated. To operate the system continuously and automatically, it is necessary to modify the minimum operational SOC value, and in addition to that the EMS computer must remember the last shut-down SOC and Voltage which interrupted the system and add some margin to reflect the measurement error in the system.

Voltage Control Algorithm Modeling for Electromagnetic Retarder's Power Recovery Device (전자기형 리타더의 전력회수장치를 위한 전압제어알고리즘 모델링)

  • Jung, Sung-chul;Kwon, Ki-hyun;Ko, Jong-sun
    • Proceedings of the KIPE Conference
    • /
    • 2014.11a
    • /
    • pp.37-38
    • /
    • 2014
  • 대형 버스 및 트럭 등과 같이 하중이 무거운 차량 같은 경우, 제동 부담이 아주 크다. 잦은 제동과 부하가 크기 때문에 마찰을 이용한 기존 방식의 브레이크들은 브레이크 파열 및 페이드 현상이 일어날 수 있다. 이러한 과부하를 분담하기 위해 현재 보조브레이크(리타더)를 사용하며, 이때의 제동에너지를 전기에너지를 회생하여 에너지를 절감하는 연구가 현재 활발히 진행되고 있다. 본 논문에서는 와전류를 이용한 전자기형 리타더의 해석 및 제어 방법을 다룰 것이며, 제동에너지를 전기에너지로 회생하기 위해 L-C 공진회로로 모델링하였다. 그리고 리타더에서 발생하는 전압을 간략히 다상변압기로 구현하였다. 제어장치의 구동펄스에 따라 바뀌는 공진회로의 전압을 분석하였으며, 이 전압을 제어하기 위한 제어기를 제안하였고 Matlab Simulink를 이용해 가상실험을 실행하였다.

  • PDF

A New LED Light Device Lighting Control Algorithm for Optimal Energy Saving (최적의 에너지 효율을 위한 새로운 LED 조명기기 점등제어 알고리즘)

  • In, Chi-Goog;Hong, Sung-Il;Chang, Jeong-Uk;Lin, Chi-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.6
    • /
    • pp.17-23
    • /
    • 2012
  • In this paper, we were proposed a new LED light device lighting control algorithm for optimal energy saving. The propose lighting control algorithm be to the LED lights devices lighting control by measuring illuminance into multi sensors. And it be to lighting control by inverting of octagon pattern during set-up time. All the LED is lighting when detecting motion by the motion sensor. And, it was designed enable remote management control by communicate with central monitoring center using Zigbee wireless network to measured data from sensors at real time. In this paper, a proposed lighting control algorithm was measured power consumption about the lighting status of LED lighting device using the lighting control program for demonstrate of energy savings effect. The measured result, the lighting method applying proposed algorithm were proved energy savings effect of more 40% more compared to the existing lighting method.

Energy Efficient Dynamic-Threshold MAC protocol for Wireless Sensor Networks (유비쿼터스 센서 네트워크를 위한 에너지 절약적인 MAC 프로토콜 연구)

  • Choi, Won-Jun;Youn, Hee-Yong
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.11a
    • /
    • pp.331-333
    • /
    • 2005
  • 유비쿼터스 컴퓨팅을 가능하게 해주는 기반기술의 하나인 유비쿼터스 센서 네트워크(Ubiquitous Sensor Networks)란, 주변 사물과 환경을 인식하고 네트워크를 통해 실시간 정보를 구축, 활용토록 하는 초소형, 저전력 센서들로 구성된 무선 통신망이라 할 수 있다. 유비쿼터스 센서 네트워크에서의 MAC 프로토콜은 그 특성상 기존의 MAC 프로토콜과는 달리 에너지 사용량을 최소화하여 네트워크 수명을 오랫동안 유지하도록 하는 것이 요구된다. 따라서 본 논문에서는 센서 네트워크의 수명의 최대화를 고려한 DT (Dynmic-Threshold) MAC프로토콜을 제안한다. DTMAC프로토콜은 각 노드의 버퍼에 임계값을 적용하여 전송 주기를 지연시켜 에너지 절감성을 극대화하게 되며 멀티 홉 환경에서 에너지 절감성의 효과론 더욱 높이기 위해 각 노드의 버퍼에 싱크와의 홉 수에 따른 차등적 임계값을 적용하며, 또한 이로 인해 야기되는 데이터 전송지연 문제를 해결키 위하여 긴급 데이터에 대한 빠른 전송을 보장하는 알고리즘을 포함한다.

  • PDF