현재, 에너지 효율 향상으로 소비감축을 시행하는 새로운 에너지 시스템이 대두되고 있다. 이에 스마트그리드가 확산되면서 계시별 요금제가 확대되고 있다. 계시별 요금제는 계절별 / 시간별로 요금을 다르게 적용해 사용량에 따라 요금을 내는 요금제이다. 본 연구에서는 에너지 전력 사용량 데이터를 예측하기 위해, 온도/요일/시간/계절 등 외부 요인을 고려하고 시계열 예측 모델인 LSTM을 활용한다. 이러한 에너지 사용량 예측 모델을 기반으로 기기별 사용패턴을 분석하여 전력 에너지를 최대부하시간대에서 경부하시간대로 수요이전 함으로써 에너지 사용요금을 절감한다. 기기별 사용패턴을 분석하기 위해서는 시간대별로 기기의 사용량 패턴을 학습 및 분류하는 clustering 기법을 사용한다. 정리하자면, 본 연구에서는 사용자의 전력 데이터 사용량을 기반으로 사용량과 사용 요금을 예측 및 기기별 사용패턴을 분석하고 분석 기반의 맞춤형 수요이전 서비스를 제공함으로써 사용자에게 요금 절감 효과를 가져다 준다.
산업시설 가운데 화력발전소에 스마트 부하관제 시스템을 이용하여 메탈 조명을 LED 조명으로 대체하여 전력을 절감하였다. LED 조명의 빛의 세기를 조절 할 수 있는 디밍을 통해서 사용자의 다양한 요구사항을 반영할 수 있다. 수요 예측은 전력 사용량이 많은 시간대의 전력사용량을 분산시키는 시스템이다. 수요 예측 스케줄에 의해서 목표전력량에 도달하기 위해 설정된 시간대에 디밍으로 LED 조명의 전력량을 조절하여, 기존 LED 조명 대비 전력량을 27.8% 절감하였다. 외부에 눈과 비가 오거나 밤에 실내가 어두워져서 작업 환경에 영향을 미치는 경우가 있다. 실시간으로 조도를 측정하여 작업 환경이 원활한 기준조도에 맞도록 LED 조명을 디밍 하여 작업환경을 개선하였다.
전력은 모든 나라에서 사회 발전과 경제 성장에 가장 기본적인 자원이다. 산업이 고도화 되고 경제의 규모가 발전하면서 전력의 소비량은 점점 증가하고 있다. 전력을 공급하는 쪽에서는 전력을 생산할 때 자원의 낭비를 줄이기 위해 전력 사용량을 예측하는 것은 중요한 일이다. 또한 전력 수요 예측을 통해 여름과 겨울의 피크 타임에서의 전력 수요를 분산하는 것이 가능하다. 그리고 소비 전력의 예측은 국내에서 수요자원 거래시장(Negawatt market)이 본격화되면서 더욱 중요하게 되었다. 더구나 전력 소비량 예측은 소비자가 전력 시장에 직간접적으로 참여하는 수요관리 방법을 제공해준다. 본 연구에서는 1999년부터 2011년까지의 국내총생산, 1인당 국민총소득, 부가세, 국내전력소비량을 이용하여 제주도의 어업 전력 사용량을 예측하는데 유전자 알고리즘을 사용하고 있다. 유전자 알고리즘은 다양한 조합 최적화 분야에서 최적해를 찾는데 유용하게 사용되는 알고리즘이다. 본 논문에서 유전자 알고리즘에서 최적의 동작을 위한 파라미터들을 찾는다. 그리고 실제 전력 소비량 예측을 위해 사용되는 계수(coefficient)들의 최적값을 찾아 예측값과 실제 전력 소비량의 오차를 최소화하는데 목적이 있다.
국내 한국진력에서 관리 운영하고 있는 전자식 전력량계는 약 55만 여대이며, 이중 약 15만 여대가 고안용 전자식 전력량계로 2000년대 초반부터 원격검침을 통해 전력사용량을 측정하고 고객 측에 대해서는 역률과 누적전력량 등의 기타 부가서비스를 제공하고 있다. 전력량계와 원격통신을 이용한 전력부가서비스는 전력회사의 입장에서는 고객의 부하사용에 대한 다양한 정보를 효율적으로 수집하여 피크부하 제어 등의 수요관리를 효과적으로 시행할 수 있고 고객의 입장에서는 과거는 물론 미래의 사용량을 예측하고 기타 전력사용패턴 등을 관찰함으로서 고객의 능동적인 참여로 전력사용량을 절약하는 효과를 가져 올 수 있다. 현 시점에서의 국내 전력부가서비스의 활용수준은 초기단계로 매우 기본적인 정보에 한해서 활용이 되고 있다. 이에 본 논문에서는 기존의 국내외 관련 연구사례와 적용사례, 그리고 시행현황의 조사 분석을 통해 향후의 국내 전력부가서비스 적용전망과 발전방향을 모색해 보고자 한다.
다양한 학습 모델이 발전하고 있는 지금, 학습을 통한 다양한 시도가 진행되고 있다. 이중 에너지 분야에서 많은 연구가 진행 중에 있으며, 대표적으로 BEMS(Building energy Management System)를 볼 수 있다. BEMS의 경우 건물을 기준으로 건물에서 생성되는 다양한 DATA를 이용하여, 에너지 예측 및 제어하는 다양한 기술이 발전해가고 있다. 하지만 FEMS(Factory Energy Management System)에 관련된 연구는 많이 발전하지 못했으며, 이는 BEMS와 FEAMS의 차이에서 비롯된다. 본 연구에서는 실제 공장에서 수집한 DATA를 기반으로 하여, 전력량 예측을 하였으며 예측을 위한 기술로 시계열 DATA 분석 방법인 LSTM 알고리즘을 이용하여 진행하였다.
전세계적으로 기후변화 대응을 위한 글로벌 탄소중립을 공조하고 있다. 한국의 경우 온실가스 배출량이 빠른 속도로 증가하고 있어 해결이 시급한 상황이다. 이에 본 연구는 스팀트랩이라는 열 에너지 수집 디바이스를 개발하고, 스팀트랩으로 에너지 사용량을 데이터로 수집하여 향후 전력 사용량에 대해서 예측이 가능한 AI 모델을 개발하였다. 해당 AI 모델의 전력 사용량 예측 정확도 평균은 96.7%로 높은 정확도를 보여주었다. 따라서 해당 AI 모델을 통해 어느날 전력 사용량이 높은지와 어떤 설비에서 전력 사용량이 높은지를 예측하고 관리 할 수 있게 되었다. 향후 연구는 스팀트랩의 이상탐지를 통한 효율적인 장비 운용과 에너지 관리 시스템의 표준화를 통해 에너지 소비 효율을 최적화하여 온실가스 배출을 줄이고자 한다.
우리나라는 자원 빈국인 동시에 에너지 다소비 국가이다. 또한 전기 에너지에 대한 사용량 및 의존도가 매우 높고, 총 에너지 사용의 20% 이상은 건물에서 소비된다. 딥러닝과 머신러닝에 대한 연구가 활발해지면서 다양한 알고리즘을 에너지 효율 분야에 적용하려는 연구가 진행되고 있으며, 에너지의 효율적인 관리를 위한 건물에너지관리시스템(BEMS)의 도입이 늘어가는 추세이다. 본 논문에서는 스마트플러그를 이용하여 직접 수집한 가구당 기기별 에너지 사용량을 바탕으로 데이터베이스를 구축하였다. 또한 RNN과 LSTM 모델을 이용하여 수집한 데이터를 효과적으로 분석 및 예측하는 알고리즘을 구현하였다. 추후 이 데이터는 에너지 사용량 예측을 넘어 전력 소비 패턴 분석 등에 적용할 수 있다. 이는 에너지 효율 개선에 도움이 될 수 있으며, 미래 데이터의 예측을 통해 효과적인 전력 사용량 관리에 도움을 줄 것으로 기대된다.
전력수요의 예측은 안정적인 전력공급을 위한 수급계획수립을 위해서 그리고 전력계통의 최적운영계획수립을 위해서도 필요하다. 특히 안정적인 전력수급확보를 위해서는 중장기 전력수요예측이 중요하고 공급안정성 강화를 위해서는 지역별 전력수요예측이 중요하다. 지역별 전력수요예측은 지역에 소요되는 부하를 충족시킬 수 있도록 송전선로 및 변전소 등의 계통망의 최적상태 구성 및 유지를 위한 필수적인 과정으로 알려져 있다. 따라서 본 논문은 12개월(중장기)동안 대한민국 시도별 16개 지역의 전력사용량을 SARIMA 모형을 이용하여 예측하는 방법을 제안한다.
최근 에너지 인터넷에서 지능형 원격검침 인프라를 이용하여 확보된 대량의 전력사용데이터를 기반으로 효과적인 전력수요 예측을 위해 다양한 기계학습기법에 관한 연구가 활발히 진행되고 있다. 본 연구에서는 전력량 데이터와 같은 시계열 데이터에 대해 효율적으로 패턴인식을 수행하는 인공지능 네트워크인 Gated Recurrent Unit(GRU)을 기반으로 딥 러닝 모델을 제안하고, 실제 가정의 전력사용량 데이터를 토대로 예측 성능을 분석한다. 제안한 학습 모델의 예측 성능과 기존의 Long Short Term Memory (LSTM) 인공지능 네트워크 기반의 전력량 예측 성능을 비교하며, 성능평가 지표로써 Mean Squared Error (MSE), Mean Absolute Error (MAE), Forecast Skill Score, Normalized Root Mean Squared Error (RMSE), Normalized Mean Bias Error (NMBE)를 이용한다. 실험 결과에서 GRU기반의 제안한 시계열 데이터 예측 모델의 전력량 수요 예측 성능이 개선되는 것을 확인한다.
에너지의 생산 효율성을 증가시키기 위해 최근 스마트그리드 기술 중 지능형 검침 시스템(AMI, advanced metering infrastructure)의 개발이 활발히 진행되고 있다. 전력 소비 데이터를 분석하고 소비 패턴을 예측하는 일은 AMI에서 핵심적인 부분이다. 본 논문에서는 수집된 전력 소비 데이터를 분석하고 발생할 수 있는 오류들을 정리하였으며 소비 패턴을 월별로 k-means 군집화 알고리즘을 사용하여 분석하였다. 또한 deep neural network를 이용하여 소비 패턴을 예측하였는데, 가구별 하루 전력 사용량 예측의 어려움을 극복하기 위하여 전력 사용량을 100개의 군집으로 분류하여 이 군집의 하루 평균으로 다음날 군집의 평균을 예측하였다. 실제 AMI에서의 전력 데이터를 사용하여 오류들을 분석하였으며 군집화 방법을 도입하여 성공적으로 전력 소비 예측이 가능하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.