• Title/Summary/Keyword: 전도성 섬유

Search Result 184, Processing Time 0.029 seconds

Gait pattern analysis system using pressure sensor based on conductive fiber (전도성 섬유 기반의 압력센서를 이용한 보행패턴 분석 시스템)

  • Jung, Hwa-Yung;Wang, Chang-Won;Na, Ye-Ji;Ho, Jong-Gab;Min, Se-Dong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2015.10a
    • /
    • pp.1369-1371
    • /
    • 2015
  • 본 논문은 전도성섬유 압력센서로 보행신호를 획득하고 걷기, 서기, 앉기, 계단오르기, 계단내려오기 등 총 5가지 행동을 인식하는 시스템을 개발하는 것이 목적이다. 시스템은 Capacitive pressure 센서, CDC(Capacitive to Digital Converter), 마이크로프로세서, 블루투스 모듈, 스마트 폰으로 구성되고 획득한 데이터 패턴을 분류한 결과 평균 99.5%의 높은 인식률을 보였다. 각 발당 한 개의 채널만을 이용해 행동패턴을 인지함으로써 적은 수의 채널로도 행동인지의 가능함을 확인할 수 있었다.

Fabrication of axially aligned $TiO_2/PVP$ nanofibers ($TiO_2/PVP$ 나노섬유의 제조)

  • Lee, Se-Jong
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.17 no.1
    • /
    • pp.30-34
    • /
    • 2007
  • [ $TiO_2/PVP$ ] nanofibers were electrospun by varying the collector grounding design to improve the axial alignment of fibers. The collectors are composed of two pieces of conductive substrates separated by a gap f3r the uniaxial alignment of fibers (X design). The collectors consisting of two sets of substrates placed by $90^{\circ}$ (XY design) equipped with a timer are also prepared for biaxial alignment of fibers. Both collectors show that the charged nanofibers are stretched to span across the gap between the electrodes. Experimental results reveal that the latter collector is more effective on the directionality of electrospun $TiO_2/PVP$ nanofibers due to the dissipation of accumulated electric charge between the collectors.

Variations in Electrical Conductivity of CNF/PPy Films with the Ratio of CNF and Application to a Bending Sensor (탄소나노섬유의 함량에 따른 CNF/PPy 필름의 전기전도도 및 굽힘센서로 응용)

  • Kim, Cheol;Zhang, Shuai;Kim, Seon-Myeong
    • Composites Research
    • /
    • v.23 no.3
    • /
    • pp.31-36
    • /
    • 2010
  • A new material, carbon-nanofiber/polypyrrole (CNF/PPy) composite films, with different CNF weight ratios were fabricated electrochemically. Compared to the fabrication process based on simple physical mixing, the flexibility of the new film has been improved much better than the previous similar material. Pure PPy films were also fabricated by the new electrochemical process for the comparison of difference. Several SEM images were taken at two locations (electrode-side and solution-side) and at the cross section of the samples. Electrical conductivity of the composite films was measured by the four-probe method. The conductivity of the pure PPy film 0.013cm thick was 79.33S/cm. The CNF/PPy composite film with 5% CNF showed a conductivity of 93S/cm. One with 10% CNF showed a conductivity of 126 S/cm. The conductivity of PPy improves, as the CNF weight ratio increases. The good conductivity of CNF/PPy composites makes them a candidate for a small bending actuator. A bending sensor consists of PPy and PVDF, which can be operated in the air, was designed and the bending deflection was calculated using FEM.

Thermal Heating Characteristics of Electroless Cu-Plated Graphite Fibers (무전해 구리도금 된 흑연 섬유의 발열 특성)

  • Lee, Kyeong Min;Kim, Min-Ji;Lee, Sangmin;Yeo, Sang Young;Lee, Young-Seak
    • Korean Chemical Engineering Research
    • /
    • v.55 no.2
    • /
    • pp.264-269
    • /
    • 2017
  • To improve heating characteristics of graphite fibers, graphite fibers were copper-plated by electroless plating. The Cu-plated graphite fibers were investigated by thermos-gravimetric analysis in air to calculate quantities of copper on surface of graphite fiber according to plating time. Also, the surface temperature with applied voltage was observed by thermos-graphic camera using a strand of graphite fiber. According to the increment of plating time, the higher quantities of plated copper on graphite fiber were obtained. The electric conductivity of plated graphite fiber for 20 minutes was resulted in 1594.3 S/cm, and surface temperature of this sample showed the maximum temperature $57.2^{\circ}C$. These result could be attributed that copper having great electric conductivity are growing on graphite fiber and followed improving heating characteristics.

Electromagnetic Interference Shielding Effectiveness of Hybrid Conductive Fabrics (하이브리드 전도성 직조섬유의 전자파 차폐효과)

  • Han, Gil-Young;Kim, Ki-Yeol;Yun, Tae-Soon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.2
    • /
    • pp.81-86
    • /
    • 2015
  • This study investigated electromagnetic interference (EMI) shielding effectiveness (SE) of hybrid conductive fabrics. The coaxial transmission line method was used to measure the EMI Shielding effectiveness of the conductive fabrics. We designed and constructed a measuring system, consisting of a network analyzer and a device that serves as a sample holder and at the same time as a transmission medium of incident electromagnetic waves. The measurements of SE were carried out in a frequency range from 100 MHz to 2 GHz. The results of the EMI shielding experiments showed that the maximum electromagnetic shielding effectiveness (EMSE) values of sandwich type C/A/C (carbon fiber sheet/aluminum foil tape/carbon fiber sheet) and C/Ni/C (carbon fiber sheet/magnetic shielding foil/carbon fiber sheet) samples were 55 dB and 113 dB, respectively, at a frequency of 1.9 GHz.

A Study on Electromagnetic Interference Shielding Effectiveness of the Aluminum film, Conductive Fabric and Nano Carbon black/Carbon Fiber Reinforced Composites (알루미늄 필름, 전도성 직조섬유/나노 카본블랙 탄소섬유복합재료의 전자파 차폐효과에 관한 연구)

  • Han, Gil-Young;Song, Dong-Han;Bae, Ji-Soo;Ahn, Dong-Gyu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.4
    • /
    • pp.10-16
    • /
    • 2008
  • This study investigated electromagnetic interference(EMI) shielding effectiveness(SE) of the aluminum film, conductive fabric and nano carbon black carbon fiber reinforced composites. We fabricated carbon fiber reinforced composites filled with nano carbon black where they bonded aluminum film and conductive fabric. The measurements of SE were carried out frequency range from 300MHz to 1.5GHz. It is observed that the SE of the bonded aluminum film and conductive fabric composites is the frequency dependent, increase with the increase in filler nano carbon black content. The aluminum film bonded composites showed higher SE compared to that of carbon black and conductive fabric. The aluminum film bonded epoxy composite was shown to exhibit up to 80dB of SE. The result that aluminum film bonded composite can be used for the purpose of EMI shielding as well as for some microwave applications.

  • PDF

Study of the Synthesis of Cinducting Polymer(Study on the Electrical Conductivity of Acry lonitrile-Acrylic Acid Series Copolymers lnduced by Cu Ion) (전도성 섬유의 합성에 관한 연구(구리이온을 도입한 Acrylinitrile-Acrylic Acid계 공중합체의 도전성에 관한 연구))

  • 김동철;송해영;한상옥;전재완
    • Electrical & Electronic Materials
    • /
    • v.1 no.2
    • /
    • pp.126-135
    • /
    • 1988
  • Acrylonitrile-Acrylic acid 공중합체와 이를 amidation시킬 공중합체에 구리착물을 형성시켜 IR spectrum분석, 점도측정, 전자현미경관찰, 열분석, 전기전도성등을 검토하였다. AN-AA 공중합체-Cu(II)와 아미드화 AN-AA 공중합체-Cu(II)착물은 pH9의 범위에서 가장 안정한 값을 가지며 착물이 형성되거나 Cu$_{x}$S가 도입된 공중합체는 그 구조가 ompact해짐을 알 수 있었다. 공중합체에 Cu(II)착물이 형성되면 열안정성이 감소되며 Cu(II)착물은 아세톤 용액에서 요오드로 dope 될 때 저항값이 $10^{5}$-$10^{6}$.OMEGA..cm를 나타냈다. 저항값은 CuCl$_{2}$와 I$_{2}$의 양에 영향을 받으며 20wt% 이상의 CuCl$_{2}$와 1.0wt% I$_{2}$로 처리하였을 때 반도체영역의 저항값을 보였다. 또 Cu$_{x}$S를 도입할 경우 CuSO$_{4}$의 농도가 30g/l로, 3시간 반응시켰을 때 가장 만족스러운 전도도값을 나타냈다. 공중합체-Cu(II)보다 구리이온을 도입한 Cu$_{x}$S공중합체의 전도도값이 $10^{4}$정도로서 공중합체-Cu(II)보다 높은 전도성을 나타냈다.다.

  • PDF

The Effect of Crystallization by Heat Treatment on Electromagnetic Interference Shielding Efficiency of Carbon Fibers (열처리 온도에 의한 구조 결정성이 탄소섬유의 전자파 차폐 성능에 미치는 영향)

  • Kim, Jong Gu;Chung, Choul Ho;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.22 no.2
    • /
    • pp.138-143
    • /
    • 2011
  • To investigate the electromagnetic interference shielding efficiency (EMI SE) property based on heat treatment effects of carbon fibers in various temperatures, the polyacrilonitrle-based carbon fibers were prepared by electrospinning method and treated at 1073, 1323, 1873 and 2573 K. The surface morphology of carbon fibers was investigated by using FE-SEM and the carbon crystallization was studied by Raman spectroscopy based on effects of reaction temperatures. The electrical conductivity was obtained by measuring the surface resistance with four probe method on carbon crystallization. The permittivity, permeability and EMI SE were investigated by using S-parameter in the range of 800~4500 MHz. In case of carbon fibers treated at 2573 K, the improved carbon crystallization was confirmed by Raman spectrum and the enhanced electrical conductivity showing 54.7 S/cm was also observed. The permittivity was dramatically improved by factor of 4 based on effect of high reaction temperature. Eventually, the highly improved EMI SE value was obtained showing around 41.7 dB.

메탈파우더/섬유강화 복합재료의 전자파 차폐효과

  • 한길영;안동규;이상훈;김민수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.55-55
    • /
    • 2004
  • 최근 전기 전자 장치의 사용이 급속하게 증가하고 있다. AC모터, 프린터, 디지털 컴퓨터, 계산기, 핸드폰 등과 같은 장비들은 많은 전자파를 방출하고 있다. 이러한 전자파에 노출로 암과 같은 질병이 발생할 수도 있다는 논란이 전 세계적으로 관심이 집중되고 있으며, 전자파에너지를 차패할 수 있는 재료 개발의 필요성이 절실히 요구되고 있는 실정이다. 일반적으로 금속과 합금이 전자파 차폐목적으로 사용되었다 그러나 이러한 재료들은 중량이 무겁고 가요성이 떨어지는 단점이 있다.(중략)

  • PDF