• Title/Summary/Keyword: 전도성 섬유

Search Result 184, Processing Time 0.026 seconds

Analysis and Design of Planar Textile Resonator for Wearable Magnetic Resonance-Wireless Power Transfer (의복용 자기공진형 무선전력전송 시스템을 위한 평면형 직물공진기의 설계 및 연구)

  • Kang, Seok Hyon;Jung, Chang Won
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.8
    • /
    • pp.119-126
    • /
    • 2016
  • In this paper, we proposed the planar textile resonator for constructing wearable MR-WPT system and analyzed the characteristic of textile substrates used in resonators. The planar textile resonators were designed to resonate at 1-10 MHz. The loop and coil were fabricated planar structure on textile substrate using conductive materials. Polyester fiber and cotton widely used in real life were chosen as textile resonators for wearable applications and copper tape and silver paste were used for fabricating planar loop and coil on textile substrate. For comparison analysis on transfer efficiency according to the types of textile, transmitter and receiver parts were symmetric. According to the result, for the highest transfer efficiency of wearable WPT system, the planar resonators have specifications of relative thick textile substrate with low permittivity and low surface resistance of conductive pattern. The performed experiments show that the planar textile resonator is possible to be used for resonator in wearable MR-WPT system.

Effects of Separator Carbonization on the Characteristics of Aluminium Polymer Condenser (알루미늄 고분자 콘덴서의 특성에 대한 절연지 탄화의 영향)

  • Kim, Jae Kun;Yu, Hyung Jin;Hong, Yoong He;Park, Mi Jin;Park, Seung Youl
    • Applied Chemistry for Engineering
    • /
    • v.17 no.5
    • /
    • pp.539-546
    • /
    • 2006
  • A study on the polymerization of polyethylenedioxythiophene (PEDOT) and the carbonization process of a separator was carred out in order to apply conductive polymer PEDOT to the winding typed aluminum condenser as a solid electrolyte and a negative electrode. PEDOT was polymerized with ethylenedioxythiophene (EDOT) as a monomer and ferric-p-toluenesulfonate as an oxidizing agent. The separator of condenser element was carbonized to control its fibrous tissue for the purpose of making it easy to impregnate the PEDOT solution into the microporous etched pit of aluminum foil by preventing separator from concentrating the PEDOT solution on itself. The characteristics of condenser such as capacitance, dissipation factor, equivalent series resistance, and thermal resistance depended on a carbonization temperature and a carbonization time. It was found that a thickness and a density of the used separator were major parameters of carbonization process and the characteristics of condenser were affected by these parameters.

Preparation of Dual-functionalized Polymeric Membrane Electrolyte and Ni, Co-based Nanowire/MOF Array on Carbon Cloth for High-performance Supercapacitor (이중 기능 고분자 전해질 막의 제조 및 탄소 섬유에 니켈, 코발트 기반의 나노와이어/MOF 배열을 통한 고성능 슈퍼커패시터 연구)

  • Hye Jeong Son;Bong Seok Kim;Ji Min Kwon;Yu Bin Kang;Chang Soo Lee
    • Membrane Journal
    • /
    • v.33 no.4
    • /
    • pp.211-221
    • /
    • 2023
  • This study presents a comprehensive study on the synthesis and characterization of PVI-PGMA/LiTFSI polymeric membrane electrolytes and CxNy-C flexible electrodes for energy storage applications. The dual-functional PVI-PGMA copolymer exhibited excellent ionic conductivity, with the PVI-PGMA73/LiTFSI200 membrane electrolyte achieving the highest conductivity of 1.0 × 10-3 S cm-1. The electrochemical performance of the CxNy-C electrodes was systematically investigated, with C3N2-C demonstrating superior performance, achieving the highest specific capacitance of 958 F g-1 and lowest charge transfer resistance (Rct) due to its highly interconnected hybrid structure comprising nanowires and polyhedrons, along with binary Co/Ni oxides, which provided abundant redox-active sites and facilitated ion diffusion. The presence of a graphitic carbon shell further contributed to the enhanced electrochemical stability during charge-discharge cycles. These results highlight the potential of PVI-PGMA/LiTFSI polymeric membrane electrolytes and CxNy-C electrodes for advanced energy storage devices, such as supercapacitors and lithium-ion batteries, paving the way for further advancements in sustainable and high-performance energy storage technologies.

Development and Assessment of Conductive Fabric Sensor for Evaluating Knee Movement using Bio-impedance Measurement Method (슬관절 운동 평가를 위한 생체 임피던스 측정용 전도성 섬유센서 개발 및 평가)

  • Lee, Byung-Woo;Lee, Chung-Keun;Cho, Ha-Kyung;Lee, Myoung-Ho
    • Journal of Biomedical Engineering Research
    • /
    • v.32 no.1
    • /
    • pp.37-44
    • /
    • 2011
  • This paper describes the development and assessment of conductive fabric sensor for evaluating knee movement using bio-impedance measurement method. The proposed strip-typed conductive fabric sensor is compared with a dot-typed Ag/AgCl electrode for evaluating validity under knee movement condition. Subjects are composed of ten males($26.6{\pm}2.591$) who have not had problems on their knee. The strip-typed conductive fabric sensor is analyzed by correlation and reliability between a dot-typed Ag/AgCl electrode and the strip-typed conductive fabric sensor. The difference of bio-impedance between a dot-typed Ag/AgCl electrode and the strip-typed conductive fabric sensor averages $7.067{\pm}13.987\;{\Omega}$ As the p-value is under 0.0001 in 99% of t-distribution, the strip-typed conductive fabric sensor is correlated with a dot-typed Ag/AgCl electrode by SPSS software. The strip-typed conductive fabric sensor has reliability when it is compared with a dot-typed Ag/AgCl electrode because most of bio-impedance values are in ${\pm}1.96$ standard deviation by Bland-Altman Analysis. As a result, the strip-typed conductive fabric sensor can be used for assessing knee movement through bio-impedance measurement method as a dot-typed Ag/AgCl electrode. Futhermore, the strip-typed conductive fabric sensor is available for wearable circumstances, applications and industries in the near future.

Excitation Frequency Characteristics of a Conductive Fabric Sensor Using the Bio-impedance for Estimating Knee Joint Movements (슬관절 운동 평가를 위한 생체 임피던스 측정용 전도성 섬유 센서의 여기 주파수별 특성 평가)

  • Lee, Byung-Woo;Lee, Chung-Keun;Kim, Jin-Kwon;Jeong, Wan-Jin;Lee, Myoung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.7
    • /
    • pp.1427-1433
    • /
    • 2011
  • This study describes a conductive fabric sensor and determines an optimum excitation frequency of the sensor to evaluate knee joint movements. Subjects were composed of 15 males (age: $30.7{\pm}5.3$) with no known problems with their knee joints. The upper side of subjects' lower limbs was divided into two areas and the lower side of subjects' lower limbs was divided into three areas. The sensors were attached to 1 for 3 spot from a hip joint and to 3 for 4 spot from a knee joint which are the optimum conductive fabric sensor configuration to evaluate knee joint movements. As a result, the optimum excitation frequency for evaluating knee joint movements using conductive fabric sensors was 25 kHz. Average and standard deviation of bio-impedance changes from 15 subjects were $92.1{\pm}137.2{\Omega}$ at 25 kHz. The difference of bio-impedance changes between 25 kHz and 50 kHz was statistically significant (p<0.05) and the difference of bio-impedance changes between 25 kHz and 100 kHz was also statistically significant (p<0.001). These results showed that conductive fabric sensors are more sensitive to measure bio-impedance for evaluating knee joint movements as an excitation frequency decreases.

Fabrication and Evaluation of Sensor for Measuring Pulse Wave Velocity using Piezo Film and Conductive Textile (압전 필름과 전도성 섬유를 이용한 맥파 전달 속도 측정을 위한 센서의 제작 및 성능평가)

  • Kim, Jung-Chae;Jee, Sun-Ha;Yoo, Sun-Kook
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.135-143
    • /
    • 2012
  • Arterial stiffness is causing the serious problems for human who is suffered from hypertension and metabolic syndrome. So it is important that measure the arterial stiffness for early prevention. Many researches point out that pulse wave velocity(PWV) is the reliable and simple method to predict arterial stiffness. In this paper, we developed the sensing parts that detect the pulse wave and ECG by using piezoelectric film and conductive textile with elastic band. Our system could detect 3ch pulse wave and ECG. Simultaneously, our algorithm extracts the features for calculating the delays among pulse waves. The delays are the significant parameter to estimate PWV, thus we design the experiment for evaluating the performance of our sensing parts. The reference is PP-1000(HanByul Meditech, Korea) that is good for performance evaluation. As a result, the start point of the pulse wave was the most reliable feature for comparing with PP-1000(r=0.691, P=0.00). The results between two operators showed that there is only a slight difference in the reproducibility of the devices. In conclusion, we assume that the suggested sensor could be more comfortable and faithful method for arterial stiffness.

Electrochemical Characteristics of Si/PC/CNF/PC Composite for Anode Material of Lithium ion Battery (이차전지 음극활물질 Si/PC/CNF/PC 복합 소재의 전기화학적 특성)

  • Jeon, Do-Man;Na, Byung-Ki;Rhee, Young-Woo
    • Korean Chemical Engineering Research
    • /
    • v.56 no.6
    • /
    • pp.798-803
    • /
    • 2018
  • In order to use Si as an anode material for lithium-ion battery, the particle size was controlled to less than $0.5{\mu}m$ and carbon was coated on the surface with the thickness less than 10 nm. The carbon fiber was grown on the Si surface with 50~150 wt%, and the carbon coating was carried out once again. The Si composite material was mixed with dissimilar metals to increase the conductivity, and graphite was mixed to improve cyclic life characteristics. The physical and electrochemical characteristics of composite materials were measured with XRD, SEM, TEM and coin cell. The discharge capacity of Si/PC/CNF/PC was lower than that of Si/PC (Pyrolytic Carbon)/CNF (Carbon Nano Fiber). However, the cyclic life of Si/PC/CNF/PC was higher. Initial discharge capacity of 1512 mA h g-1 at 0.2 C rate and initial efficiency of 78% were shown. It also showed a capacity retention of 94% in 10 cycles.

Study on the numerical model of complex permittivity of composites based on the percolation theory (퍼콜레이션 이론에 기초한 복합재료의 복소 유전율 모델에 대한 연구)

  • Kim, Jin-Bong;Lee, Sang-Kwan;Kim, Chun-Gon
    • Composites Research
    • /
    • v.22 no.3
    • /
    • pp.44-54
    • /
    • 2009
  • In this paper, we proposed a numerical model the complex permittivity for the E-glass fabric/epoxy composite laminate containing electrical conductive carbon black. The model is based on the percolation theory and for the composites over than the percolation threshold and in higher frequency band in that the AC conductivity is fully proportional to the frequency. The measurement for the complex permittivity wasperformed at the frequency band of 0.5 GHz $\sim$ 18.0 GHz using a vector network analyzer with a 7 mm coaxial air line. The proposed model is composed of the numerical equations of the scaling law used in percolation theory and constants obtained from experiments to quantify the model itself. The model describes the complex permittivity as the function of frequency and filler concentration. The model was verified by being compared with the measurements.

Synthesis and Electrochemical Properties of Li[Fe0.9Mn0.1]PO4 Nanofibers as Cathode Material for Lithium Ion Battery by Electrospinning Method (전기방사를 이용한 리튬 이차전지용 양극활물질 Li[Fe0.9Mn0.1]PO4 나노 섬유의 합성 및 전기화학적 특성)

  • Kim, Cheong;Kang, Chung-Soo;Son, Jong-Tae
    • Journal of the Korean Electrochemical Society
    • /
    • v.15 no.2
    • /
    • pp.95-100
    • /
    • 2012
  • $LiFePO_4$ is an attractive cathode material due to its low cost, good cyclability and safety. But it has low ionic conductivity and working voltage impose a limitation on its application for commercial products. In order to solve these problems, the iron($Fe^{2+}$)site in $LiFePO_4$ can be substituted with other transition metal ions such as $Mn^{2+}$ in pursuance of increase the working voltage. Also, reducing the size of electrode materials to nanometer scale can improve the power density because of a larger electrode-electrolyte contact area and shorter diffusion lengths for Li ions in crystals. Therefore, we chose electrospinning as a general method to prepare $Li[Fe_{0.9}Mn_{0.1}]PO_4$ to increase the surface area. Also, there have been very a few reports on the synthesis of cathode materials by electrospinning method for Lithium ion batteries. The morphology and nanostructure of the obtained $Li[Fe_{0.9}Mn_{0.1}]PO_4$ nanofibers were characterized using scanning electron microscopy(SEM). X-ray diffraction(XRD) measurements were also carried out in order to determine the structure of $Li[Fe_{0.9}Mn_{0.1}]PO_4$ nanofibers. Electrochemical properties of $Li[Fe_{0.9}Mn_{0.1}]PO_4$ were investigated with charge/discharge measurements, electrochemical impedance spectroscopy measurements(EIS).

Investigation of the Electromechanical Response of Smart Ultra-high Performance Fiber Reinforced Concretes Under Flexural (휨하중을 받는 스마트 초고강도 섬유보강 콘크리트의 전기역학적 거동 조사)

  • Kim, Tae-Uk;Kim, Min-Kyoung;Kim, Dong-Joo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.5
    • /
    • pp.57-65
    • /
    • 2022
  • This study investigated the electromechanical response of smart ultra-high performance fiber reinforced concretes (S-UHPFRCs) under flexural loading to evaluate the self-sensing capacity of S-UHPFRCs in both tension and compression region. The electrical resistivity of S-UHPFRCs under flexural continuously changed even after first cracking due to the deflection-hardening behavior of S-UHPFRCs with the appearance of multiple microcracks. As the equivalent bending stress increased, the electrical resistivity of S-UHPFRCs decreased from 976.57 to 514.05 kΩ(47.0%) as the equivalent bending stress increased in compression region, and that did from 979.61 to 682.28 kΩ(30.4%) in tension region. The stress sensitivity coefficient of S-UHPFRCs in compression and tension region was 1.709 and 1.098 %/MPa, respectively. And, the deflection sensitivity coefficient of S-UHPFRCs in compression region(30.06 %/mm) was higher than that in tension region(19.72 %/mm). The initial deflection sensing capacity of S-UHPFRCs was almost 50% of each deflection sensitivity coefficient, and it was confirmed that it has an excellent sensing capacity for the initial deflection. Although both stress- and deflection-sensing capacity of S-UHPFRCs under flexural were higher in compression region than in tension region, S-UHPFRCs are sufficient as a self-sensing material to be applied to the construction field.