• Title/Summary/Keyword: 전단 성능

Search Result 1,128, Processing Time 0.025 seconds

Application of Au-Sn Eutectic Bonding in Hermetic Rf MEMS Wafer Level Packaging (Au-Sn 공정 접합을 이용한 RF MEMS 소자의 Hermetic 웨이퍼 레벨 패키징)

  • Wang Qian;Kim Woonbae;Choa Sung-Hoon;Jung Kyudong;Hwang Junsik;Lee Moonchul;Moon Changyoul;Song Insang
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.3 s.36
    • /
    • pp.197-205
    • /
    • 2005
  • Development of the packaging is one of the critical issues for commercialization of the RF-MEMS devices. RF MEMS package should be designed to have small size, hermetic protection, good RF performance and high reliability. In addition, packaging should be conducted at sufficiently low temperature. In this paper, a low temperature hermetic wafer level packaging scheme for the RF-MEMS devices is presented. For hermetic sealing, Au-Sn eutectic bonding technology at the temperature below $300{\times}C$ is used. Au-Sn multilayer metallization with a square loop of $70{\mu}m$ in width is performed. The electrical feed-through is achieved by the vertical through-hole via filled with electroplated Cu. The size of the MEMS Package is $1mm\times1mm\times700{\mu}m$. By applying $O_2$ plasma ashing and fabrication process optimization, we can achieve the void-free structure within the bonding interface as well as via hole. The shear strength and hermeticity of the package satisfy the requirements of MIL-STD-883F. Any organic gases or contamination are not observed inside the package. The total insertion loss for the packaging is 0.075 dB at 2 GHz. Furthermore, the robustness of the package is demonstrated by observing no performance degradation and physical damage of the package after several reliability tests.

  • PDF

Cyclic Seismic Performance of Reduced Beam Section Steel Moment Connections: Effects of Panel Zone Strength and Beam Web Connection Type (패널존 강도 및 보 웨브 접합방식이 RBS 철골 모멘트접합부의 내진거동에 미치는 영향에 관한 연구)

  • Lee, Cheol-Ho;Jeon, Sang-Woo;Kim, Jin-Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.3
    • /
    • pp.69-77
    • /
    • 2003
  • This paper presents test results on eight reduced beam section(RBS) steel moment connections. The testing program addressed bolted versus welded web connection and panel zone(PZ) strength as key variables, Specimens with medium PZ strength were designed to promote energy dissipation from both PZ and RBS regions such that the requirement for expensive doublet plates could be reduced. Both strong and medium PZ specimens with a welded web connection were able to provide satisfactory connection rotation capacity for special moment-resisting frames. On the other hand, specimens with a bolted web connection performed poorly due to premature brittle fracture of the beam flange of the weld access hole. If fracture within the beam flange groove weld was avoided using quality welding, the fracture tended to move into the beam flange base metal of the weld access hole. Plausible explanation of a higher incidence of base metal fracture in bolted web specimens was presented. The measured strain data confirmed that the classical beam theory dose not provide reliable shear transfer prediction in the connection. The practice of providing web bolts uniformly along the beam depth was brought into question. Criteria for a balanced PZ strength improves the plastic rotation capacity while reduces the amount of beam distortion ore also proposed.

Studies on the characteristics of stone structures by shape reversal, geotechnical and dynamic structural engineerings (석조구조물의 효율적 유지관리를 위한 형상역공학적, 지반공학적 및 구조동역학적 특성연구 - 첨성대를 중심으로 -)

  • Shon, Bo-Woong;Kim, Seong-Beom
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.25-48
    • /
    • 2004
  • Structures show the phehomena of deformation and lowering of function with time-lapse by artificial environments and changes of geotechnical conditions or accumulation of initial deformation elements. This study aims the structural assessment of cultural property, Chum-Sung-Dae, located in Kyeongju city, Korea. It was built about 1,300 years ago, and has undergone deformation and ground-subsidence with time-lapse. Non-destructive evaluation techniques were applied to the Chum-Sung-Dae, to protect it from survey Because of this reason, 3D precise laser scanning surveying system was applied to measure the exact size of Chum-Sung-Dae, displacement and declining angles. Geophysical exploration also was applied to study the subsurface distribution of geotechnical parameters or physical properties. Natural frequencies were measured from real and model of Chum-Sung-Dae to study the dynamic characteristics of vibration and/or earthquake load and stiffness of structures.

  • PDF

Adhesive Performance and Fracture Toughness Evaluation of FRP-Reinforced Laminated Plate (FRP 보강적층판의 접착성능 및 파괴인성평가)

  • Jung, Hong-Ju;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.6
    • /
    • pp.868-875
    • /
    • 2015
  • In order to replace existing slit type steel plate on the wooden structure joint, the FRP-reinforced laminated plates were produced. Four types of FRP-reinforced laminated plates were produced according to the type of reinforcement and adhesive, and before applying to the joint, the adhesion performance test according to KSF 3021 and KSF 2160 and the Compact Tension (CT) type fracture toughness test specified in ASTM D5045-99 were carried out. As a result of adhesion performance test, all GFRP textile, GFRP sheet, and GFRP Textile-Sheet type FRP-reinforced laminated plates satisfied the requirement of soaking delamination percentage with smaller than 5% based on KS standard. However, aramid type specimen satisfied the standard as the soaking delamination percentage of 4.8% but it did not satisfied the standard as the water proof soaking delamination percentage of 70%. As a result of fracture toughness test, the volume ratio of reinforcement to timber became 23% so that the strength of FRP-reinforced laminated plates increased by two to four times in comparison to the control specimen. It was confirmed that the GFRP Textile-Sheet type specimen was most resistant to the fracture most since the ratio of stress intensity factor compared with that of the control increased to 61% owing to the parallel arrangement of glass fiber to the load. As a result of tensile shear strength test using FRP-reinforced laminated plates and nonmetal dowels, it is about 12% lower than metal connectors.

An analytical Study for the Development of Highly Elastic Material applicable for Joint in Modular Pavement (모듈러 포장에 적용가능한 고탄성 연결재료 개발을 위한 해석적 연구)

  • Lee, Young-Ho;Kang, Su-Tae;Song, Jae-Joon;Lee, Sang-Yoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.11
    • /
    • pp.5947-5955
    • /
    • 2013
  • This study was intended to estimate the axial deformation of joint between pavement modules in the rapid-constructible modular pavement system, and to investigate the applicability of two-phase composites for a joint material, which was composed of cement paste, epoxy, or polyurethane as a matrix and sand as particles. A case which had supports under the pavement module as well as a case which the module was put on roadbed directly were considered in FEM analysis for the axial deformation. The effect of self-weight, live load, thermal change, and drying shrinkage were estimated and the thermal change was found to cause the largest deformation compared to the others. Deformation capacity of two-phase composites was predicted using the modified shear-lag model. In the analytical results for the elastic modulus and maximum tensile strain with different volume fractions of sand, 20~30 % replacement of sand was revealed to satisfy the required strain capacity with economy when if the width of joint was designed to be 15~20 mm.

Comparison of Flow Characteristics for the Development of a C-Type Strainer with Its Inlet and Outlet on a Straight Line (유입·유출구가 일직선상인 C형 스트레이너 개발을 위한 유동특성 비교)

  • Shin, Byung-kyun;Kwon, Chang-Hee
    • Journal of Digital Convergence
    • /
    • v.14 no.11
    • /
    • pp.257-265
    • /
    • 2016
  • The purpose of this study was to develop a strainer that could protect a flow system by blocking the introduction of foreign substances into the pipe of industrial or architectural facilities. Strainers are installed at the front tip of valves, machines, or pumps in the piping line of clean water, oil, or gas. There are Y-type, U-type, and T-type strainers. The study identified problems with the Y-type strainers, develop a "C-type strainer with its inlet and outlet on a straight line" as a more improved new model, and compared them in functions in a full-scale strainer test. The study conducted a full-scale strainer test according to four situations at the flow laboratory of Korea Research Institute of Standards and Science by using the old Y-type strainer and C-type strainer 50A. The test results show that the C-type strainer had a higher capacity coefficient(Kv) than the Y-type one, recording 74.9% when there was no screen, 54.5% when there were no foreign substances in the screen, 54.2% when there was a 15% accumulation of foreign substances, and 52.4% when there was a 30% accumulation of foreign substances. The investigator conducted a test only with the 50A type due to the limitations of life-size strainers, but the results demonstrate that the C-type strainer had better flow characteristics than the Y-type one.

Experimental Verification for the Control Performance of a TLD by Using Real-Time Hybrid Shaking Table Testing Method (실시간 하이브리드 진동대 실험법을 이용한 TLD 제어성능의 실험적 검증)

  • Lee, Sung-Kyung;Park, Eun-Churn;Lee, Sang-Hyun;Chun, Lan;Woo, Sung-Sik;Min, Kyung-Won
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.4 s.74
    • /
    • pp.419-427
    • /
    • 2006
  • In this paper, an experimental real-time hybrid method, which implements the earthquake response control of a building structure with a TLD(Tuned Liquid Damper) by using only a TLD as an experimental part, is proposed and is experimentally verified through a shaking table test. In the proposed methodology, the whole building structure with a TLD is divided into the upper TLD and the lower structural parts as experimental and numerical substructures, respectively. The control force acting between their interface is measured with a shear-type load-cell which is mounted on the shaking table. The shaking table vibrates the upper experimental TLD with the response calculated from the numerical substructure, which is subjected to the excitations of the measured interface control force at its top story and an earthquake input at its base. The experimental results show that the conventional method, in which both a TLD and a building structure model are physically manufactured and are tested, can be replaced by the proposed methodology with a simple experimental installation and a good accuracy for evaluating the control performance of a TLD.

Shake Table Response and Analysis of RC Bridge Piers with Lap-Spliced Steel under NFGM (주철근 겹침이음된 RC교각의 근단층지반운동에 대한 진동대 응답과 분석)

  • Chung, Young-Soo;Park, Chang-Young;Hong, Hyun-Ki;Park, Ji-Ho;Shim, Chang-Su
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.4
    • /
    • pp.451-458
    • /
    • 2008
  • The near-fault ground motion (NFGM) is characterized by a single long period velocity pulse of large magnitude. NFGM's have been observed in recent strong earthquakes, Izmit Turkey (1999), Kobe Japan (1995), Northridge USA (1994), etc. These strong earthquakes have caused considerable damage to infrastructures because the epicenter was close to the urban area, called as NFGM. Extensive research for the near-fault ground motion (NFGM) have been carried out in strong seismic region, but limited research have been done for NFGM in low or moderate seismic regions because of very few records. The purpose of this study is to investigate and analyze the effect of near-fault ground motions on reinforced concrete (RC) bridge piers with lap-spliced longitudinal reinforcing steels. The seismic performance of four RC bridge piers under near-fault ground motions was investigated on the shake table. In addition, a RC bridge pier is subjected to pseudo-dynamic loadings. Test results showed that large residual displacements were observed in RC bridge piers under NFGM. RC specimens on the shake table failed at relatively low displacement ductility, compared with the displacement ductility of RC bridge pier subjected to pseudo-dynamic loadings.

Multi-copter Wind-tunnel Test (멀티콥터 풍동시험)

  • Hwang, SeungJae;Cho, TaeHwan;Kim, YangWon;Chung, JinDeog
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.6
    • /
    • pp.10-16
    • /
    • 2017
  • In order to improve the safety of the multi-copter, Korea Aerospace Research Institute (KARI) performed a wind-tunnel test using an octocopter with the maximum takeoff weight (MTOW) of 28 kg. The wind-tunnel test was performed with three different RPM ranges, 3,500, 4,500 and 5,500 rpm, and three different wind speeds, 3.5, 5 and 7 m/sec. The tested range of the angle of attacks was $-40^{\circ}$ to $20^{\circ}degree$ and ${\pm}90^{\circ}degree$. Vortex ring state (VRS) of the tested multi-copter was located around the vertical descending speed of 6 m/sec and the decrement of thrust was about 13 % at the time of testing. Compared with the single propeller wind-tunnel test result, the propeller efficiency of the octocopter dropped to 10 to 15% depending on the propeller RPM. It is hypothesized that the obtained aerodynamic characteristics by the wind-tunnel test will be used to improve the performance and wind resistance of the multi-copter.

Flexural Experiment of PSC-Steel Mixed Girders and Evaluation for Analyses on Tangentional Stiffness of Connection (프리스트레스트 콘크리트-강 혼합거더의 휨 실험 및 경계면 수평계수 분석)

  • Kim, Kwang-Soo;Jung, Kwang-Hoe;Sim, Chung-Wook;Yoo, Sung-Won
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.2
    • /
    • pp.231-237
    • /
    • 2008
  • This study was performed to evaluate joint behavior of prestressed concrete(PSC)-steel mixed girders through the flexural test of 14 beams according to embedded length, amount of reinforcing steel, stud arrangement, and prestressing force. All test beams were failed by turns of desertion of reinforcing steel, stud, and steel plate. From test results, prestressing force was more effective on performance of connection than stud arrangement and reinforcing steel. And the spacing of stud is also more effective than embedding length. This paper also presented 3D nonlinear analysis considering the slip of composite section as well as the static load tests of PSC-steel mixed girders. According to the slip modulus, the nonlinear analysis showed that the behavior of hybrid girders could be divided into three parts as full-composite, partial-composite and non-composite. However, the experimental results showed that the PSC-steel hybrid girders with shear connectors took the part of partial composite action in ultimate load stage. In addition, it was founded that stud shear connectors and welded reinforcements were contributed to improve the ultimate strength of hybrid girders for about 20%.