• Title/Summary/Keyword: 전단파괴

Search Result 1,156, Processing Time 0.028 seconds

A Study on the Evaluation of Shear Resisting Capacity for the Various Perforated Shape Shear Connector (합성거동을 위한 유공판형 전단연결재의 강도평가에 관한 연구)

  • Kim, Young-Ho
    • Composites Research
    • /
    • v.21 no.5
    • /
    • pp.1-8
    • /
    • 2008
  • In recent years, the reversed L-shaped perforated shear connector has been developed to mitigate the problem associated with headed stud and Perforbond shear connector and to simulate the simultaneous failure of concrete and shear connector. And FRP perforated shear connector has been applied to composite concrete and FRP module in the FRP-concrete composite bridge deck. The design criterion of the reversed L-shaped and FRP perforated shear connector has not been established yet since the lack of experimental and analytical study results. In this paper, the existing design equations for the Perforated were briefly discussed and the equation fur the prediction of shear resisting capacity of the reversed L-shaped and FRP perforated shear connector was suggested based on the experimental test, FEM analysis. and the existing equation for the Perfobond. The predict results obtained by the suggested equation arc compared with the experimental results, the applicability and effectiveness of suggested equation was verified.

Shear Resistance of Unreinforced Cast-In-Place Anchors in Uncracked and Cracked Concrete by Seismic Qualification Tests (지진모의실험에 의한 비균열 및 균열콘크리트에 매입된 비보강 선설치앵커의 전단 저항강도 평가)

  • Park, Yong Myung;Kim, Tae Hyung;Kim, Dong Hyun;Jo, Sung Hoon;Lee, Jong Han
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.3
    • /
    • pp.347-357
    • /
    • 2015
  • In this study, an experimental study was performed to evaluate the concrete breakout strength of unreinforced cast-in-place anchors by seismic qualification test under shear loading. The CIP anchors tested herein were 30mm in diameter with an edge distance of 150mm and an embedment depth of 240mm in uncracked and cracked concrete. The cracked specimen consisted of orthogonal and parallel crack to the loading direction, respectively. The dynamic loading sequence during the seismic qualification test was determined based on CSA N287.2, ACI 355.2 and ETAG 001 codes. After the dynamic loading, the static loading was applied until failure occurs. The shear resistance by seismic qualification tests showed almost the same strength as that obtained from the static tests in uncrcaked and cracked concrete, respectively. Meanwhile, the breakout depth did not reach $8d_0$, therefore the modified strength equation of ACI 318-11 could estimate properly the concrete breakout strength, which does not consider effective bearing length.

Strength of RC Beam with Various Shear Reinforcement Ratios After Experiencing Different Duration of Fire Load (다양한 전단보강근비를 가진 RC보의 화재노출시간에 따른 강도변화)

  • Seo, Soo-Yeon;Jeoung, Chae-Myeoung;Choi, Ki-Bong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.6
    • /
    • pp.188-197
    • /
    • 2010
  • This paper presents research result to study the change of structural capacity of reinforced concrete beams with various shear reinforcement ratios after damage by fire load. In addition, fundamental data are given in order to predict the strength variation of RC member due to fire damage by evaluating the previous calculation method codified in codes. Nine RC beam specimens were made and exposed to the fire controled by the standard fire curve. And the structural capacity was evaluated through a failure test under simple support condition. Previous code formula, ACI code and Eurocode were reviewed and used for the calculation of the strength of specimens damaged by fire. From the test, RC beam specimens exhibited very brittle failure when it exposed to fire controled by standard fire curve during more than one hour. And this failure pattern tended to be more serious when shear reinforcement ratio decreased or fire loading duration increased. From the evaluation of the calculation process in code, the change of strength due to fire can be properly predicted if the damage of materials is well defined.

THE EFFECT OF CYANATE METHACRYLATE ON THE SHEAR BOND STRENGTHS TO DENTIN (Cyanate methacrylate가 상아질 결합강도에 미치는 영향)

  • Kim, Hyang-Kyung;Choi, Kyung-Kyu;Choi, Gi-Woon;Park, Sang-Jin
    • Restorative Dentistry and Endodontics
    • /
    • v.32 no.3
    • /
    • pp.236-247
    • /
    • 2007
  • The purpose of this study was to evaluate the effects of cyanate methacylate on the shear bond strengths to bovine dentin surfaces as a dentin primers. Seven experimental adhesives were made with different mass fraction of Isocyanatoetylme-thacrylate (IEM), 40wt% HEMA (Wako Pure Chemical Industries Osaka, Japan), 0.6% camphoroquinone, 0.4% amine and ethanol as balance dentin bonding agents (0, 2, 4, 6, 8, 10, 12%) were made and applied on the surface of bovine dentin specimens of 7 experimental groups. Shear bond strengths were measured using a universal testing machine (Instro 4466). To identify the ratio and modes of cohesive failures, microscopic examinationn was performed. The ultra-structure of resin tags were observed under scanning electron microscope. The results were as follows ; 1) A higher shear bond strengths (33.62 MPa) in group 8% of Cyanate methacrylate to dentin were found, but there were no statistically significancy between Groups (p > 0.05). 2) The higher ratio of cohesive failures mode in group 2, 6, an 10% could be seen than that in any other groups. 3) A shorter resin tags were observed in all experimental groups. This could be resulted that the preventing from the cyanate methacrylate penetrate into dentin owing to reacting it with dentin collagen. Therefore the resin tags were shorter in lengths. Whether the higher bonding strengths of dentin bonding agents can be affected was not been assured with statistic results. The results indicated that the relation between tensile strengths of the dentin adhesives to bovine dentin and resin tags formed into the dentin could not affected. The main reason of increasing the shear bond strength to bovine dentin in experimental groups could not be assured.

An Experimental Study for Flexure/Shear Failure Behavior of Composite Beam with GFRP Plank Used As a Permanent Formwork and Cast-in-place High Strength Concrete (영구거푸집으로 사용한 유리섬유 FRP 판과 현장타설 고강도콘크리트로 이루어진 합성보의 휨/전단파괴거동에 관한 실험적 연구)

  • Yoo, Seung-Woon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.6
    • /
    • pp.4245-4252
    • /
    • 2015
  • In this study, an experiment which utilized glass fiber reinforced polymer(GFRP) plank as the permanent formwork of cast-in-place high strength concrete structures was performed. The GFRP plank currently being produced has smooth surface so that it causes problems in behavior with concrete. Therefore, this research analyzed the flexure/shear failure behavior of composite beams, which used GFRP plank as its permanent formwork and has short shear span ratio, by setting the sand coated at GFRP bottom surface, the perforation and interval of the GFRP plank web, and the width of the top flange as the experimental variables. As a result of the experiments for effectiveness of sand attachment in case of not perforated web, approximately 47% higher ultimate load value was obtained when the sand was coated than not coated case and bending/shear failure mode was observed. For effectiveness of perforation and interval of gap, approximately 24% higher maximum load value was seen when interval of the perforation gap was short and the fine aggregate was not coated, and approximately 25% lower value was observed when the perforation gap was not dense on the coated specimen. For effectiveness of top flange breadth, the ultimate load value was approximately 17% higher in case of 40mm than 20mm width.

Shear behavior at the interface between particle and non-crushing surface by using PFC (PFC를 이용한 입자와 비파쇄 평면과의 접촉면에서의 전단 거동)

  • Kim, Eun-Kyung;Lee, Jeong-Hark;Lee, Seok-Won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.14 no.4
    • /
    • pp.293-308
    • /
    • 2012
  • The shear behavior at the particle/surface interface such as rock joint can determine the mechanical behavior of whole structure. Therefore, a fundamental understanding of the mechanisms governing its behavior and accurately estimation of the interface strength is essential. In this paper, PFC, a numerical analysis program of discrete element method was used to investigate the effects of the surface roughness on interface strength. The surface roughness was characterized by smooth, intermediate, and rough surface, respectively. In order to investigate the effects of particle shape and crushing on particle/surface interface behavior, one ball, clump, and cluster models were created and their results were compared. The shape of particle was characterized by circle, triangle, square, and rectangle, respectively. The results showed that as the surface roughness increases, interface strength and friction angle increase and the void ratio increases. The one ball model with smooth surface shows lower interface strength and friction angle than the clump model with irregular surface. In addition, a cluster model has less interface strength and friction angle than the clump model. The failure envelope of the cluster model shows non-linear characteristic. From these findings, it is verified that the surface roughness and particle shape effect on the particle/surface interface shear behavior.

Evaluation and Test Method Characterization for Mechanical and Electrical Properties in BGA Package (BGA 패키지의 기계적${\cdot}$전기적 특성 평가 및 평가법)

  • Koo Ja-Myeong;Kim Jong-Woong;Kim Dae-Gon;Yoon Jeong-Won;Lee Chang-Yong;Jung Seung-Boo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.4 s.37
    • /
    • pp.289-299
    • /
    • 2005
  • The ball shear force was investigated in terms of test parameters, i.e. displacement rate and probe height, with an experimental and non-linear finite element analysis for evaluation of the solder joint integrity in area array packages. The increase in the displacement rate and the decrease in the probe height led to the increase in the shear force. Excessive probe height could cause some detrimental effects on the test results such as unexpected high standard deviation and probe sliding from the solder ball surface. The low shear height conditions were favorable for assessing the mechanical integrity of the solder joints. The mechanical and electrical properties of the Sn-37Pb/Cu and Sn-3.5Ag/Cu BGA solder joints were also investigated with the number of reflows. The total thickness of the intermetallic compound (IMC) layers, consisting of Cu6Sn5 and Cu3Sn, was increased as a function of cubic root of reflow time. The shear force was increased up to 3 or 4 reflows, and then was decreased with the number of reflows. The fracture occurred along the bulk solder, in irrespective of the number of reflows. The electrical resistivity was increased with increasing the number of reflows.

  • PDF

A Study on the Pullout Behavior of Shear Connectors which Fix the Additional Wall to the PHC-W Piles in the PHC-W Type Permanent Building Retaining Wall (PHC-W 흙막이를 활용한 건축영구벽체에서 PHC-W말뚝과 증설벽체를 합벽시키는 전단연결재의 인발거동에 관한 연구)

  • Jin, Hong-min;Kim, Sung-su;Choi, jeong-pyo;Choi, Yongkyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.12
    • /
    • pp.107-113
    • /
    • 2017
  • Shear Connector should be used to fix the PHC pile with extension wall in order to utilize PHC-W retaining wall as permanent wall. The pullout behaviours on shear connectors anchored into PHC-W pile were observed as two modes. The first type behaviour showed that after reaching the maximum pullout resistance, the anchorage was broken and shear connector was pulled out abruptly. The second type behaviour showed that even after arriving the maximum pullout resistance, the anchorage was not destroyed and there was a progressive increase in pullout displacement. The maximum pullout resistance of the steel anchor shear connector is larger than that of deformed bar shear connector. The larger the diameter and the longer the embedment length of shear connector, the higher the maximum pullout resistance would be. The pullout displacements corresponding to the maximum pullout resistance of the shear connector showed various ranges regardless of the materials, the diameters and the anchoring lengths. A-D20 shear connectors showed a pull-out displacement of about 8~10 mm. A-D16, D-D19 and D-D16 shear connectors exhibited a pulling displacement of about 14~20 mm, but a pulling displacement of about 6~10 mm when the anchoring lengths were 50 and 80 mm.

Shear Performance of Full-Scale Recycled Fine Aggregate Concrete Beams without Shear Reinforcement (전단 보강되지 않은 실규모 순환 잔골재 콘크리트 보의 전단성능)

  • Lee, Young-Oh;Yun, Hyun-Do
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.3
    • /
    • pp.225-232
    • /
    • 2012
  • This paper presents the test results on the shear performance of large-size reinforced concrete beams using recycled fine aggregate to evaluate its applicability to structural concrete. The performance of these beams is compared to that of similar beams casted with natural coarse and fine aggregates. All of the beam specimens without shear reinforcement had $400mm{\times}600mm$ rectangular cross section and a shear span ratio (a/d) of 5.0. Five concrete mixtures with different replacement levels of recycled fine aggregates (0, 30, 60, 70 and 100%) were used to obtain a nominal concrete compressive strength of 28MPa. The test results of load-deflection curve, shear deformation, diagonal cracking load, crack pattern, ultimate shear strength, and failure mode are examined and compared. In addition, code and empirical equations from KCI, JSCE, CSA, Zsutty, and MCFT were considered to evaluate the applicability of these equations for predicting shear strength of reinforced concrete beam with recycled fine aggregate. The results showed that the overall shear behavior of reinforced concrete beams incorporating less than 60% recycled fine aggregate was comparable with that of conventional concrete beam. The MCFT gave good prediction and other code equations were conservative in predicting the shear strength of the tested beams. The beam specimens with replacement of 70 and 100% of natural fine aggregates by recycled fine aggregates showed different failure mode than other tested beams.

The Effects of Steel-Fiber Reinforcement on High Strength Concrete Replaced with Recycled Coarse Aggregates More Than 60% (순환굵은골재 60% 이상 사용한 고강도 콘크리트에 대한 강섬유 보강 효과)

  • Kim, Yoon-Il
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.4
    • /
    • pp.404-417
    • /
    • 2016
  • The purpose of this study is to examine the extent to which the deterioration in strength of high strength concrete of 60MPa replaced by a large amount of recycled coarse aggregates (more than 60% to 100% of replacement ratio) could be recovered with steel fiber reinforcement through material compressive strength test and shear failure test on short and middle beams and then to offer useful data for aggregate supply system of a sustainable resource circulation type. This study first examined the results of previous related tests. The results of the material compressive strength tests confirmed that when using a combination of steel fiber reinforcements of volumn ratio 0.75% and high quality recycled coarse aggregates with an water absorption rate within 2.0%, the strength characteristics of high strength concrete of 60MPa level were not only restored to the strength level of concrete made with natural aggregates, but also showed superior ductility. And the shear failure tests on short and middle beams using recycled coarse aggregates more than 60% with shear span to depth ratio (a/d) of 2 and 4 controlled by shear forces mainly confirmed that effects of superior shear strength increase and ductile behavior characteristics were showed by steel fiber reinforcements.