• Title/Summary/Keyword: 전단파괴

Search Result 1,157, Processing Time 0.028 seconds

A Study on Static and Fatigue Behavior of Restrained Concrete Decks without Rebar by Steel Strap (Steel Strap으로 횡구속된 무철근 바닥판의 정적 및 피로거동 특성 연구)

  • Jo, Byung Wan;Kim, Cheol Hwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.5
    • /
    • pp.137-147
    • /
    • 2012
  • In the steel-free bridge concrete deck, steel straps are generally used instead of conventional steel rebar while laterally restrained in the perpendicular direction to the traffic in order fir the arching effect of concrete deck. In this paper, the minimum amount of FRP bar is to be suggested based on the structural strength, crack propagation, stress level and others in order to control cracks. As a result of laboratory tests, the structural strength of deck with 0.15 percentage of steel strap showed improved structural strength including ductility. The long-term serviceability of steel strap deck with FRP bar proved to satisfy the requirements and to be structurally stable while showing the amount of crack and residual vertical displacement within the allowable limits after two million cyclic loadings. The structural failure of RC bridge deck is generally caused from the punching shear rather than moment. Therefore, the ultimate load at failure could be estimated using the shear strength formula in the two-way slab based on ACI and AASHTO criteria. However the design criteria tend to underestimate the shear strength since they don't consider the arching effects and nonlinear fracture in bridge deck with lateral confinement. In this paper, an equation to estimate the punching shear strength of steel strap deck is to be developed considering the actual failure geometries and effect of lateral confinement by strap while the results are verified in accordance with laboratory tests.

A Study on the Structure and lateral Loading Capacity of Wooden Frame of Ancient Commoner's House (고대 민가의 구조 및 목조 프레임의 수평내력에 관한 연구)

  • 서정문;최인길;전영선;이종림;신재철;허택영
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.1 no.2
    • /
    • pp.31-37
    • /
    • 1997
  • Structural details of the three-bay-straw-roof house which was the most common form of residence as a commoner's house during ancient period are suggested. Wooden frames are used in the house. The typical form of joint used is Sagaemachum. The static lateral loading capacity of the frames is evaluated through the test on full scale models. The effects of joint type at the column head and wooden lattice on the lateral loading capacity and the failure modes of frames are analyzed. The ultimate lateral loading capacity and displacement of the ordinary frame at failure are 1.090 N and 400 mm(1/6rad), respectively. These values for the frame with high column are 4,160 N and 250 mm(1/9.6rad), respectively. The behavior of joint at column head controls the overall lateral loading capacity of the frame and shows very large nonlinearity. The general failure modes of joint for an ordinary frame and a frame with high column are shear and bending failure at the branches of Sagaemachum, respectively.

  • PDF

Development of Failure Criterion of Hot Mix Asphalt Using Triaxial Shear Strength Test (삼축압축시험을 이용한 아스팔트 혼합물의 파괴기준 개발)

  • Kim, Seong Kyum;Lee, Kwan Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.3
    • /
    • pp.947-954
    • /
    • 2014
  • In general, Fracture of the material is not occurring of the maximum normal stress or the maximum shear stress failure in the state. Maximum normal stress and maximum shear stress in the state of Critical coupling from being destroyed based on the Mohr-Coulomb theory. Couple of different mixtures, including permeable asphalt pavement, SMA and dense-graded asphalt mixture, were used for compression triaxial test at $45^{\circ}C$ and $60^{\circ}C$. Mohr-Coulomb theory to the analysis of compression triaxial test result of the internal friction angle $38.9^{\circ}{\sim}46.9^{\circ}$ measured somewhat irregularly, but in the case of cohesion, depending on whether the temperature and immersion of the specimen appeared differently. In addition, Indirect tensile test and compression triaxial test of the asphalt mixture to determine the correlation between compression triaxial test results assessed as cohesion and internal friction angle calculated using the theoretical Indirect tensile strength and measured indirectly tensile strength were analyzed. The Measured & Predicted IDT St values tended to be proportional.

System Reliability Analysis of a Shallow Foundation using Correlated Failure Modes (유상관 파양류형에 의한 얕은 기초의 신뢰도 해석)

  • Kim, Yong-Pil;Im, Byeong-Jo;Im, Chung-Mo
    • Geotechnical Engineering
    • /
    • v.2 no.3
    • /
    • pp.67-78
    • /
    • 1986
  • This paper presents how to determine the system reliability of a typical shallow foundation constituted four potential correlated failure modes of hearing capacity (BCM), consolidation settlement (CSM), moment (MFM), and tension shear (PCM). Through the idenfication of the distinct and different modes and evaluation of range of system reliability, the obtained conclusions are as follows; 1. The CSM and the PCM are the lowest and highest of reliability indices of single performance function, and the BCM and the MFM are medium of them. 2. For the correlated failure modes, the hi-modal bounds Is narrower and lower of failure probability than the unimodal bounds. Not to be overestimated, therefore, the system reliability should be based on the second-order bounds using correlated performance functions.

  • PDF

Experimental Study on the Failure Behavior of RC Octagonal Hollow Section Columns with Aspect Ratio of 4.0 and Longitudinal Steel Ratio of 2.36 ~ 4.71% (형상비 4.0이고 축방향철근비 2.36 ~ 4.71%인 팔각형 중공단면 철근콘크리트 기둥의 파괴거동에 관한 실험적 연구)

  • Ko, Seong-Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.102-111
    • /
    • 2022
  • The aim of this study is to assess the seismic performance of octagonal hollow cross section reinforced concrete bridge pier, and to investigate the effect of longitudinal reinforcement ratios on the failure behavior. Four octagonal hollow section RC bridge columns of small scale model were tested under a quasi-static cyclically reversed horizontal load with constant axial load. The volumetric ratio of transverse spiral hoop of all specimens was maintained constant(0.206%), the ratios of longitudinal reinforcement were varied(2.36 ~ 4.71%). Failure behavior and seismic performance were investigated. Three specimens with the exception of lap spliced specimen showed flexure-shear failure at final stage. The test results with the exception of lap spliced specimen showed that the displacement ductility factor and accumulated energy dissipation decreased in inverse proportion to the ratio of longitudinal steel.

Fatigue strength of stud shear connector considering bedding layer thickness in precast deck composite bridges (프리캐스트 바닥판 합성형 교량에서의 베딩층의 두께를 고려한 전단연결재의 피로강도)

  • Ryu, Hyung Keun;Shim, Chang Su;Chung, Chul Hun;Chang, Sung Pil
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.1
    • /
    • pp.113-120
    • /
    • 2002
  • A shear connection in composite bridges with precast decks has considerable characteristics different from cast-in-place deck bridges such as shear pocket and bedding layer. Thus, it is necessary to build design basis of the shear connector in precast decks through the experiments. In order to estimate fatigue life of shear connector in precast deck bridges, push-out fatigue tests were conducted with parameter, bedding layer thickness. As a result of the tests, failure modes of shear connector were observed. Consequently, empirical S-N curve equations of stud shear connector in precast deck bridges were proposed in this paper.

The Strain of Transverse Steel and Concrete Shear Resistance Degradation after Yielding of Reinforced Concrete Circular Pier (철근콘크리트 원형 교각의 횡방향철근 변형률과 항복이후 콘크리트 전단저항 저감)

  • Ko, Seong Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.1
    • /
    • pp.147-157
    • /
    • 2018
  • The basis of capacity design has been explicitly or implicitly regulated in most bridge design specifications. It is to guarantee ductile failure of entire bridge system by preventing brittle failure of pier members and any other structural members until the columns provides fully enough plastic rotation capacity. Brittle shear is regarded as a mode of failure that should be avoided in reinforced concrete bridge pier design. To provide ductility behavior of column, the one of important factors is that flexural hinge of column must be detailed to ensure adequate and dependable shear strength and deformation capacity. Eight small scale circular reinforced concrete columns were tested under cyclic lateral load with 4.5 aspect ratio. The test variables are longitudinal steel ratio, transverse steel ratio, and axial load ratio. Eight flexurally dominated columns were tested. In all specimens, initial flexural-shear cracks occurred at 1.5% drift ratio. The multiple flexural-shear crack width and length gradually increased until the final stage. The angles of the major inclined cracks measured from the vertical column axis ranged between 42 and 48 degrees. In particular, this study focused on assessing transverse reinforcement contribution to the column shear strength. Transverse reinforcement contribution measured during test. Each three components of transverse reinforcement contribution, axial force contribution and concrete contribution were investigated and compared. It was assessed that the concrete stresses of all specimen were larger than stress limit of Korea Bridge Design Specifications.

An Approach on the Prediction of Load-Carrying Capacity of Reinforced-Precast Concrete Joint with Shear Keys (프릴캐스트 콘크리트 전단키 접합부의 극한강도 예측방법)

  • 윤재진;남정수
    • Magazine of the Korea Concrete Institute
    • /
    • v.4 no.4
    • /
    • pp.135-147
    • /
    • 1992
  • 본 연구는 기존의 이론을 배경으로 전단키에 영향을 미치는 전달전달의 요소가 포함된 기본식을 산정하여, 접합부의 유형에 따라 구체적으로 전단강도를 예측하는 방법을 제안하였다. 접합부 콘크리트와 횡보강철근의 강도 및 장부호과를 고려한 프리캐스트 콘크리트 전단키 접합부의 기본극한강도식은 수정 Mohor-Coulomb의 파괴기준과 항복선의 도입에 의하여 전개하였고, 극한전단능력의 근사해는 상하계법에 의한 극치해석의 수법을 이용하여 구하고 여기에 재료의 유효강도계수를 도입하였다. 또한, 지존의 실험결과와 비교하여 그 적용성을 고찰하였다.

The effect of bond strength of longitudinal bars on shear strength of reinforced concrete beams (부착강도가 철근 콘크리트 보의 전단강도에 대한 영향)

  • Hong, Sung-Gul;Lim, Woo-Young
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.51-52
    • /
    • 2010
  • The effect of bond strength of longitudinal reinforcing bars on shear strength of reinforced concrete beams is investigated from the view point of arch and truss actions. Stress fields with bond allow us identify possible failure modes including bond failure of a deep beam as well as a slender beam. The slope angle of diagonal compression fields is interpreted as balanced failures of two components involved for shear transfer.

  • PDF

Shear Behavior of High-Strength Concrete Beams with Steel Fiber (고강도 강섬유보강콘크리트 보의 전단거동)

  • Karl, Kyoung-Wan;Hwang, Jin-Ha;Lee, Deuck-Hang;Ju, Hyun-Jin;Kim, Kang-Su;Cho, Hae-Chang
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.65-66
    • /
    • 2010
  • In this paper, an experimental investigation on three high-strength steel fiber reinforced concrete beams with 0.5%-1.0% steel fiber and the one without steel fiber, which led to shear failure, is reported to investigate the effectiveness of steel fibers as shear reinforcement. The test results showed that the shear strengths of high-strength concrete beams increased and had more ductile behavior as larger amount of steel fiber were included.

  • PDF