• Title/Summary/Keyword: 전단지간비

Search Result 26, Processing Time 0.028 seconds

Concrete Shear Strength of FRP Reinforced Concrete Beam (FRP 보강근을 사용한 콘크리트 보의 콘크리트 전단강도)

  • Cho, Jae Min;Jang, Hee Suk;Kim, Myung Sik;Kim, Chung Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.3A
    • /
    • pp.259-266
    • /
    • 2009
  • This study is to develop equations that consider the elastic modulus ratio of FRP bar and steel reinforcement, shear span to depth ratio, and flexural reinforcement ratio of FRP bar, to determine concrete shear strength of FRP reinforced concrete beams without shear reinforcement. As experimental parameters, 2 types of FRP bar, 3 types of shear span to depth ratio, and 3 types of flexural reinforcement were used. Experimental results for two of shear span to depth ratio were quoted from previous study to evaluate effect of shear span to depth ratio in more detail. Shear strength correction factors needed for evaluating concrete shear strength were proposed from regression analysis using above experimental results. Equations suggested from this study and other codes were examined and compared with 31 experimental results available in the literature. From this comparison, it could be known that the equation suggested from this study gives the most approaching result to experimental results.

The Shear-Properties of Reinforced Concrete Beams without Web Reinforcement (복부보강이 없는 철근콘크리트보의 전단특성)

  • 문제길;홍익표
    • Magazine of the Korea Concrete Institute
    • /
    • v.5 no.2
    • /
    • pp.151-161
    • /
    • 1993
  • 본 논문은 전단철근을 갖지 않는 비교적 짧은 지간의 철근콘크리트 보에서 전단특성을 규명하고 균열전단강도와 극한전단강도를 예측하기 위한 것으로 총30개의 보를 4 series로 나누어 실험을 수행하였다. 실험의 변수는 콘크리트의 강도, 전단지간-유효높이의 비, 인장철근량등이며, 실험과정을 통해 파괴형상, 처짐, 전단강도등을 측정하였다. 실험결과로부터 콘크리트의 강도가 커지고 철근량이 많아질수록, 그리고 전단지간이 짧아질수록 철근콘크리트 보의 균열 및 극한전단강도가 증가됨을 밝혔다. 또한, 실험성과를 회귀분석하여 균열전단강도와 극한전단강도 추정식을 제안하였다. 제안된 추정식에 의한 계산값과 실험성과를 비교 검토하여 그 상관성을 확인하였다.

Failure Behavior of FRP RC Beams without Shear Reinforcements (전단 보강이 없는 FRP RC보의 파괴 거동)

  • Lee, Jae-Hoon;Son, Hyun-A;Shin, Sung-Jin
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.2
    • /
    • pp.199-208
    • /
    • 2010
  • In order to substitute FRP bar for steel bar in new structures, it is necessary to establish a reliable design code. But relatively little research has been conducted on the material in Korea. So, a total of 22 beam specimens (18 GFRP reinforced concrete and 4 conventional steel reinforced concrete) were constructed and tested. In the first phase of the experiment, it was carried out to observe flexural behavior, and collect deflection and crack data. In order to eliminate of the uncertainty by the shear reinforcements and induce flexural failure mode, any stirrup were not used and only shear span-depth ratio were adjusted. However, almost beams were broken by shear and the ACI 440.1R, CSA S806, which were used to design test beams, showed considerable deviation between prediction and test results of shear strengths. Therefore in the second phase of the study, shear failure modes and behavior were observed. A standard specimen had dimensions of 3,300 mm long ${\times}$ 800 mm wide ${\times}$ 200 mm effective depth. Clear span and shear span were 2,800 mm, 1,200 mm respectively. Control shear span-depth ratio was 6.0. Four-point bending test over simple support was conducted. Variables of the specimens were concrete compressive strength, type and elastic modulus of reinforcement, shear span-depth ratio, effective reinforcement ratio, the effect of bundle placing method and cover thickness.

An Experimental Study on Shear Behavior of Steel Fiber-Reinforced Ultra High Performance Concrete Beams (강섬유 보강 초고성능 콘크리트 보의 전단 거동에 관한 실험 연구)

  • Yang, In Hwan;Joh, Changbin;Lee, Jung Woo;Kim, Byung Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.1A
    • /
    • pp.55-64
    • /
    • 2012
  • Experimental investigation on the structural behavior of steel fiber-reinforced ultra high performance concrete (UHPC) beams subjected to shear are presented. Six tests carried out on simply supported I-beams under concentrated loads are presented. The parameters varied were the volume fraction of the fibers (1.0, 1.5 and 2.0%) and shear span-effective depth ratio (2.5, 3.4). The test results indicated that ultimate shear strength increased with increasing fiber volume, and that ultimate shear strength decreased with increasing shear span-effective depth ratio. In addition, applicability of predictive equations for evaluating the ultimate shear strength of steel fiber-reinforced UHPC beams are estimated based on the test results. The comparison between computed values and the experimentally observed values are shown to validate the proposed theoretical equations. It is found that predictions by using AFGC and JSCE recommendations provide the most accurate estimates of shear strength of steel fiber-reinforced UHPC beams.

Experimental Study for GFRP Reinforced Concrete Beams without Stirrups (스터럽이 없는 GFRP 보강근 콘크리트 보에 대한 실험적 연구)

  • Ko, Seong-Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.2
    • /
    • pp.21-29
    • /
    • 2014
  • This paper evaluates the shear strength, behavior and failure mode of reinforced concrete beams with deformed GFRP reinforcing bar. Four concrete beam specimens were constructed and tested. It was carried out to observe failure behavior and load-deflection of simply supported concrete beams subjected to four-point monotonic loading. In order to eliminate of the uncertainty by the shear reinforcements, any stirrups were not used. Variables of the specimens were shear span-depth ratio, effective reinforcement ratio. The dimensions of specimen is 3,300 or $1,950mm{\times}200mm{\times}240mm$. Clear span and shear span were 2,900mm, 1,000mm respectively. Shear span-depth ratios were 6.5 and 2.5. Effective ratios of Longitudinal GFRP reinforcing bar were $1.126{\rho}_{fb}$, $2.250{\rho}_{fb}$, $3.375{\rho}_{fb}$ and $0.634{\rho}_{fb}$. All beam specimens were broken by diagonal-tension shear and the ACI 440.1R, CSA S806 and ISIS, which was used to design test beams, showed considerable deviation between prediction and test results of shear strengths.

Arch Action in Reinforced Concrete Beams (철근콘크리트보에서의 아취현상에 대한 연구)

  • Kim, Woo;Kim, Dae-Joong;Mo, Gui-Suk;Ko, Kwang-Il
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.2
    • /
    • pp.180-187
    • /
    • 1994
  • Sixteen reinforced concrete beams were tested statically up to failure to investigate the arch action. Major variables were the shear span to depth ratio, steel ratio and existence of stirrups.The arch action in reinforced concrete beams started when flexural cracks appeared at the center of the span. Due to the reduction of internal moment arm length by the development of arch action, the measured steel tension was significantly higher than the calculated. As the shear span to depth ratio arid steel ratio decrease, the arch action in reinforced concrete eams increases. Over the entire length the force in the steel of no web reinforced beams having smaller a /d ratio than 3 was constant because the beams acted as a tied arch.

Premature Failure Load of Reinforced Concrete Beams with Flexural Strengthened by Steel Plates (강판으로 휨 보강된 철근콘크리트 보의 조기파괴하중 산정)

  • Kim, Haeng-Jun;Kim, Woo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.1
    • /
    • pp.283-292
    • /
    • 2005
  • This paper predicts premature failure load of reinforced concrete beams by epoxy-boned partially steel plates. A parametric study is conducted to estimate premature failure load of beams such as with or without stirrups, unplated length ratio, steel and reinforcement ratio, shear span to depth ratio of reinforcement beam. By results of finite element analysis, it turned out that the unplated length played a dominant role in partially plated beams but reinforcement ratio and shear span to depth ratio effected the premature failure load. The approximate expression with regard to combined design variables is compared with experimental results. It shows closely agreement.

Shear Strength of High Strength Reinforced Concrete Beams (고강도(高強度) 철근(鐵筋) 콘크리트 보의 전단강도(剪斷強度)에 관한 연구(硏究))

  • Ko, Kwang Il;Kim, Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.9 no.4
    • /
    • pp.63-71
    • /
    • 1989
  • Four series of reinforced concrete beams were tested to determine their shear cracking strengths and ultimate shear capacities. All beams were singly reinforced without shear reinforcement. The concrete strength was the prime variable which was varied from 247 to $708kg/cm^2$(8500 to 10000 psi). Within each series the shear span-to-depth ratio was varied from 2 to 5, while concrete strength was held constant. Test results indicate that the effect of concrete strength on shear capacities is varied as the shear span-to-depth ratio is changed. Furthermore, the current shear design provisions do not provide a consistency with respect to estimating shear capacities of reinforced concrete beams. By introducing the shear failure mode index, a new equation is proposed to predict ultimate shear strengths of reinforced concrete beams without web reinforcement.

  • PDF

A Prediction of Shear Strength Using Arch Models in Reinforced Concrete Beams without Web Reinforcement (아치모델을 이용한 복부보강이 안된 철근 콘크리트 보의 전단강도 산정)

  • 김대중
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.6
    • /
    • pp.233-240
    • /
    • 1998
  • A rational expression, developed to predict the shear strength of reinforced concrete beams, is derived from the relationship between shear and the rate of change of bending moment along a beam coupled with experimental findings for the arch action. The proposed ultimate shear strength equation, arising from analytical premises and then calibrated with experimental data, is a similar form to the ACI 318 equation derived mainly from empirical approach. The proposed equation depends on the concrete compressive strength, amount of longitudinal steel content, and the shear span-to-depth ratio, and rationally reflects the shear resistance mechanism of combined beam action and arch action in reinforced concrete beams. The proposed equation applied to existing test data and the results were compared with those predicted by the ACI 318 equation and the Zsutty's equation.

Evaluation on Effective Width of Concrete Unfilled Composite Steel Grid Deck (콘크리트 비충전 강합성 바닥판의 유효폭 평가)

  • Park, Young Hoon;Lee, Seung Yong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.3
    • /
    • pp.521-529
    • /
    • 2017
  • In this study, analyzed the effective width of concrete unfilled composite steel grid deck which has different shear connector details from that of composite bridge. The effective width of concrete unfilled composite steel grid deck according to effective width calculation method, load size and main bearing bar spacing-span ratio was evaluated. As a result of analysis, it is analyzed that the effective width is calculated to be nearly equal to the actual effective width by idealizing the stress shape as a trapezoidal shape. In addition, shear hole penetration reinforcing bars applied to increase the shear strength is shown to increase the effective width. From the results of the analysis of the effective width according to main bearing bar spacing-span ratio, proposes the correction factor that can calculate the effective width ratio of the unfilled steel composite steel grid deck.