• Title/Summary/Keyword: 전단좌굴 강도 감소

Search Result 13, Processing Time 0.024 seconds

Elastic Interactive Shear Buckling Behavior of Trapezoidally Corrugated Steel Webs (제형파형강판 복부판의 탄성 연성전단좌굴 거동)

  • Yi, Jong Won;Gill, Heung Bae;Lee, Hak Eun
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.6 s.79
    • /
    • pp.707-715
    • /
    • 2005
  • Corrugated webs have been used for composite prestressed concrete box girder bridges. Innovative steel plate girders using corrugated webs have been proposed. It has been found that analytical and experimental researches conducted to determine the strength of trapezoidally corrugated webs can fail with respect to three different buckling modes: local, global, and interactive shear buckling. Shear buckling capacity equations based on classical and orthotropic plate buckling theories have been proposed,but these equations show some differences. In this paper, geometric parameters that influence interactive shear buckling behavior with interaction effects are identified via extensive bifurcation buckling analysis using the finite element meth.

Analysis of Shear Buckling Stresses for Steel Pipes by Detailed Parametric Study (매개변수해석을 통한 원형 강관의 전단좌굴응력 상세분석)

  • Mha, Ho-Seong;Cho, Kwang Il
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.5
    • /
    • pp.579-585
    • /
    • 2013
  • Shear buckling stresses of steel pipes due to the lateral forces have been analyzed via parametric analysis. Detailed FEM models are prepared, and steel types, thickness, radii and length of steel pipes are selected as parameters. STK400, STK490 and SM570 are used and the thickness of pipe is 2mm and 40mm. The radii(R) and lengths(L) are determined based on the values satisfying the following relationship as R/t=20~400 and L/R=1~3. The shear buckling stresses decrease for all types of considered steels as R/t increase from 20 to 200. High strength steels are more sensitive to R/t, and also have an bigger effect on shear buckling stresses than low strength steels. It is found that shear buckling stresses decrease as L/R increases, showing that the steel pipes become weak as the length of the steel pipe increases.

A Study on Shear and Flexural Performance Evaluation of Circularly Corrugated Plate (원형 파형강판의 전단 및 휨 성능평가에 관한 연구 -전단 및 휨강도 설계식 제안-)

  • Moon, Seong Hwan;Oh, Sang Hoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.5
    • /
    • pp.455-470
    • /
    • 2015
  • This research suggest method to calculate more accurate shearing and bending force on corrugated steel plate that it is produced domestically. This research analyze limitation of former formula on domestic design standard and existing research. In addition The strength calculation formula on corrugated steel plate was proposed according to result of the experiment and FEM analysis. In this study, the result that compare experiment with analysis using the proposed shear buckling coefficient and limit width to thickness ratio indicate similar behavior. As the result of the research, It is judged that the structural member design and performance evaluation of the corrugated steel plate was conveniently applied.

Shear Buckling Strength and Behaviors of Steel Plate Girder with Asymmetrical Shear Resistant Web Panel by Local Corrosion (국부 부식손상에 의하여 비대칭 전단저항 복부단면을 가진 강거더의 전단강도 및 거동평가)

  • Lee, Myoung Jin;Ahn, Jin Hee;Kim, In Tae
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.2
    • /
    • pp.105-118
    • /
    • 2014
  • The number of the deteriorated bridge has been sharply increased due to the increase in the bridge service period in Korea. Local corrosion problem of structural member can be occurred according to atmospheric corrosion environments based on the installation location of steel bridges. Especially, in case of the plate girder bridge, corrosion damage is concentrated on the web panel and stiffener at girder end. An asymmetrical shear resistant web section in the plate girder bridge can be caused from the local corrosion of the web panel, because local corrosion is not symmetrically occurred to the bridge. In this study, therefore, the shear buckling strength and behavior of a plate girder with asymmetrically corroded web panel was numerically evaluated using FE analysis, which was considering an aspect ratio and corrosion damage level of web panel. The shear buckling strength reduction of an asymmetrical shear resistant web panel was compared and evaluated according to corroded volume ratio for a web panel and for diagonal tension field of a web panel.

The Rigidity of Transverse Intermediate Stiffener of Horizontally Curved Plate Girder Web Panels (강곡선 플레이트거더 복부판의 중간수직보강재 소요강성에 관한 연구)

  • Lee, Doo Sung;Park, Chan Sik;Lee, Sung Chul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4A
    • /
    • pp.735-742
    • /
    • 2006
  • In this study, the ultimate shear strength behavior of transversely stiffened curved web panels was investigated through nonlinear finite element analysis. It was found that if the transverse stiffener has a sufficient rigidity, then curved web panels used in practical designs are able to develop the postbuckling strength that is equivalent to that of straight girder web panels having the same dimensional and material properties. The nonlinear analysis results indicate that in order for curved web panels to develop the potential postbuckling strength. The rigidity of the transverse stiffener needs to be increased several times the value obtained from the Guide Specifications (AASHTO, 2003). However, in the case of thick web panels where the shear design is governed by shear yielding, the stiffener rigidity does not have to be increased. From the analysis results, a simple design formula is suggested for the rigidity of transverse stiffener under strength limit state.

Analysis about Flexural Strength of Steel Plate-Concrete Composite Beam using Folded Steel Plate (Cap) as Shear Connector (절곡 강판(Cap)을 전단연결재로 사용한 강판-콘크리트 합성보의 휨강도 분석)

  • Cho, Tae-Gu;Choi, Byong-Jeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.7
    • /
    • pp.481-492
    • /
    • 2018
  • The steel-plate concrete composite beam is composed of a steel plate, concrete and shear connector to combine two inhomogeneous materials. In general, the steel plate is assembled by welding an existing composite beam. In this study, the SPC beam was composed of folding steel plates and concrete, without a headed stud. The folding steel plate was assembled by a high strength bolt instead of welding. To improve the workability in a field construction, a hat-shaped cap was attached to the junction with a slab. Monotonic load testing under two points was conducted under displacement control mode to analyze the flexural strength of the SPC beam using a cap as the shear connector. Five specimens with shear connector types, protrusion length, and different thickness of steel plates were constructed and tested. The experimental results were analyzed through the relationship between the shear strength ratio and flexural strength in KBC 2009. The test results showed a shear strength ratio of more than 40 %. In the case of using a cap-like specimen as the shear connector, the flexural strength was 70% of the value calculated as a fully composite beam. In addition, the cap showed a smaller shear strength than the stud, but the cap served as a shear connection. When the thickness of the steel plate was taken as a variable, the steel plate exhibited a bending strength of approximately 70% compared to a fully formed steel plate, and exhibited similar deformation performance. Local buckling occurred due to incomplete composite behavior, but local buckling occurred at a 5% higher strength for a relatively thick steel plate. The buckling width also decreased by 15%.

Panel Zone Behavior of Steel Box Connections (Box단면 접합부의 Panel Zone 거동특성)

  • Hwang, Won Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.4 s.33
    • /
    • pp.683-695
    • /
    • 1997
  • This paper presents the shear behavior of panel zone in steel frame piers. The results of loading tests on twenty box connections and three types of analysis model are reported herein. It is indicate that the major cause of the reduction of strength and shear deformation capacity (ductility) is the sectional-area ratio and the shear buckling of panel zone. Based on the results, some new proposals are presented for the evalution of strength and ductility of panel zone. This paper is also discussed the ductility of connections by current design procedure.

  • PDF

Local Buckling in Steel Box Girder Bridge with Lifting and Lowering Support Method (지점 상승 하강 공법에 의한 강상자형교의 국부좌굴)

  • Koo, Min Se;Jeong, Jae Woon;Na, Gwi Tae
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.1
    • /
    • pp.77-85
    • /
    • 2003
  • The lifting and lowering supports method makes up for the weak points in the classical method and provides makes construction economical effect to construction. The application of pre-compression to continuous steel box girder bridges makes it possible to reduce the amount of steel, the height of girders and consequently, the cost consequentlyof the bridges' construction by through the process of concrete filling- up and the lifting-lowering of the inner supports. The lifting and lowering supports method is apt to cause local buckling in the lower flange and web plates by due to the process of the lifting of the inner supports. Therefore iln this study, therefore, the possibility of local buckling could be decreased, in consideration of the lifting force and the buckling strength of stiffened plates, by increasing the number of longitudinal stiffeners and the installation of extended longitudinal stiffeners on the lower flange and the web plates in the range of positive moment.

Compression Behavior of Steel Plate-Concrete Structures with the Width-to-Thickness Ratio (폭두께비에 따른 강판콘크리트구조의 압축거동)

  • Han, Hong-Soo;Choi, Byong-Jeong;Han, Kweon-Gyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.2
    • /
    • pp.229-236
    • /
    • 2011
  • This study was conducted to understand the characteristics of the compression behavior of steel plate-concrete(SC) structures with a width-to-thickness ratio under axial loading. SC structures are structural systems where concrete is poured into steel plates to which headed stud bolts had been attached inside. The specimens were classified according to the two width-to-thickness (W/T) ratios of 1.60 and 3.56. Through these experiments, the following conclusions could be arrived at. The fracture pattern of the specimens showed that steel plate buckling occurred between the stud lines, and that a crack occurred at the concrete spalling from the sides of the concrete before the system reached the maximum compressive strength. The maximum compressive strength of the specimens was larger than that of the existing equations (AISC 2005, ACI 318-05, and KBC 2005). With the increased W/T ratio of the specimens, the strength of the concrete core was decreased to account for the confinement effects from the steel plates.

An Experimental Study on the Mechanical Properties of High Modulus Carbon-Epoxy Composite in Salt Water Environment (염수 환경에 노출된 고강성 탄소/에폭시 복합재의 물성치 변화 연구)

  • Moon, Chul-Jin;Lee, Cheong-Lak;Kweon, Jin-Hwe;Choi, Jin-Ho;Jo, Maeng-Hyo;Kim, Tae-Gyeong
    • Composites Research
    • /
    • v.21 no.6
    • /
    • pp.1-7
    • /
    • 2008
  • The main objective of this study is to investigate the effect of salt water on the mechanical properties of a high modulus carbon-epoxy composite. Specimens were made of a carbon-epoxy composite UPN139B of SK Chemical and tested under inplane tension and shear after 0, 1, 3, 6, 9, and 12 months immersion in 3.5% salt water. Acceleration technique such as temperature elevation was not used. The tensile strengths and modulli in fiber and matrix direction did not show any remarkable degradation until 12 months immersion. In contrast to the tensile properties, shear strength and modulus started to gradually decrease up to about 10% of values of dry specimens after 12 months immersion. It was confirmed through the test that the material UPN139B can be an effective material for the shell structures in salt water to resist against the external pressure buckling because of the high fiber directional modulus and corrosion resistance.