• Title/Summary/Keyword: 전단성능

Search Result 1,121, Processing Time 0.027 seconds

Cyclic Lateral Load Test on the Punching Shear Strength and the Lateral Displacement Capacity of Slab-Column Connections (슬래브-기둥 접합부의 펀칭강도 및 횡변위 성능에 관한 반복 횡하중 실험)

  • Choi, Jung-Wook;Song, Jin-Gyu;Kim, Jun-Hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.4
    • /
    • pp.99-108
    • /
    • 2007
  • In the flat-plate slab design of the KCI and ACI building code, the punching shear strength of connections with shear reinforcement can increase one and half times to that of connections without shear reinforcement. And the ACI-ASCE committee 352 recommendations propose limiting the direct shear ratio $V_g$/$V_c$ on interior connections to 0.4 to insure adequate drift capacity. In this study, four interior column-slab connections were tested to look into the punching shear strength and the lateral displacement capacity of the flat-plate slab with and without shear reinforcement under cyclic lateral loading. Based on the test results, it is found that the provision about punching shear strength in the codes may appropriate for the gravity loading only whereas it is unconservative for the lateral loading and that the limit of ACI-ASCE committee 352 appears conservative.

An Analysis on Punching Shear of Two-way Void Slab (이방향 중공슬래브-기둥 접합부 뚫림전단성능의 해석적 평가)

  • Lee, Yung Eun;Ryu, Jaeho;Ju, Young Kyu;Kim, Sang Dae
    • 한국방재학회:학술대회논문집
    • /
    • 2011.02a
    • /
    • pp.32-32
    • /
    • 2011
  • 최근 국내외에서 친환경건축물에 관한 관심이 매우 높아짐으로 인해 콘크리트의 물량을 절감하여 이산화탄소량을 줄이는 중공슬래브는 다양한 형태로 세계적으로 개발이 되고 있는 추세이다. 특히 이방향 중공슬래브는 환경적인 측면에서 이방향 중공슬래브는 중공부 생성에 재생플라스틱을 활용하여 폐자원을 재사용하고, 콘크리트와 철근의 사용량 절감에 따른 화석에너지 및 이산화탄소 발생량을 감소한다는 장점이 있다. 또한 시스템 측면에서 이방향 중공슬래브는 기존의 철근콘크리트 플랫플레이트 바닥구조 시스템의 자중을 절감하여 구조체를 경량화 시키고, 이에 따라 장스팬 구현이 가능하며, 단열효과가 뛰어나다. 이와 같이 이방향 중공슬래브는 장점이 많지만 플랫플레이트 슬래브의 취약점인 뚫림전단 파괴에 주의해야 한다. 이에 본 연구에서는 선행으로 실시된 이방향 중공슬래브-기둥 접합부 뚫림전단 성능평가 실험을 바탕으로 하여 경량체가 이방향 중공슬래브-기둥 접합부 뚫림전단 성능에 미치는 영향을 살펴보기 위해 범용 유한요소해석 프로그램인 ABAQUS를 사용하여 경량체량 및 위치를 주요변수로 한 해석적인 변화를 검토하였다. 본 연구를 통해 경량체가 삽입된 이방향 중공슬래브의 뚫림전단 성능에 대해, 해석결과 경량체 량과 위치에 따라 최대 뚫림전단강도는 기준 실험체에 비해 74.3%, 73%의 강도저하를 나타내는 것으로 알 수 있었다. 이는 실험상의 강도저하 값인 84.1%, 56.4%와 다소 차이가 있으며, 해석에서 중공부 주위의 응력집중 현상이 제대로 반영되지 않은 것으로 판단된다. 또한 이방향 슬래브에 경량체를 삽입 할 경우 경량체가 시작하는 부분에서 응력이 급격히 감소하는 현상이 나타났으며, 이러한 급격한 응력감소는 기둥 주위 위험단면의 변화를 가져오는 것으로 추정된다. 즉, 위험단면의 변화는 기둥으로부터 경량체 사이의 거리에 따라 달라지며, 위험단면 내의 콘크리트 단면 손실은 뚫림전단 강도를 감소시킨다. 본 연구에서는 이방향 중공슬래브의 뚫림전단강도를 산정할 수 있는 근사식을 제안하였으며, 보다 정확한 이방향 중공슬래브의 뚫림전단강도의 산정식을 위해서는 위험단면의 변화와 콘크리트 단면손실로 인한 전단강도 저하의 관계에 대한 추가적인 연구가 필요하다.

  • PDF

Structural Performance Evaluation on Flexural and Shear Capacity for Weight Reducing Steel Wire-Integrated Void Deck Plate Slab (자중저감 철선일체형 중공 데크플레이트 슬래브의 휨 및 전단내력에 대한 구조성능평가)

  • Kim, Sang-Seup;Ryu, Deog-Su;Boo, Yoon-Seob
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.4
    • /
    • pp.411-422
    • /
    • 2012
  • The purpose of this study is to evaluate the flexural and shear capacity of steel wire-integrated void deck plate slabs. In order to evaluate flexural and shear capacity, we make five 150mmspecimens and three 200mmspecimens by slab depth as main variable. Each series of specimen is comprised of an existing steel wire-integrated deck-plate slab and two specimens using topping depth as variable. From the series of experiments, steel wire-integrated void deck plate slabs has any decline in flexural and shear performance. Therefore, a void-deck-plate slab which inserts Omega-steel plate showed reducing a using concrete-volume and had flexural and shear capacity following existing steel wire-integrated deck-plate.

Punching Shear Strength of Slab-Column Interior Connection Considering Anchorage Performance of Shear Reinforcements (전단보강재의 정착성능을 고려한 슬래브-기둥 내부접합부의 뚫림전단강도)

  • Jung, Hyung-Suk;Choi, Hyun-Ki;Chung, Joo-Hong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.2
    • /
    • pp.51-58
    • /
    • 2022
  • Flat plate slab is cost-efficient structural system widely used in high rise building, apartment and parking garages. But flat plate-column connections are so weak against punching shear failure that it may cause collapse of overall structure. In this study, spiral type shear reinforcement which increases the shear strength and ductility of the plate-column connection and has good workability was proposed. And experimental test was performed to verify the punching shear capacity of spiral type shear reinforcement. The current code does not accurately estimate the punching shear strength of slab-column connection with shear reinforcement because slab is so slender that punching failure may occurred before shear reinforcement reached yield stress. Therefore modified equation of ACI code for punching shear strength was proposed base on finite element analysis using LUSAS program, and data analysis from CEB-FIP database.

The Effectiveness of Steel Fibers as Shear Reinforcement (강섬유를 사용한 전단보강의 효율성)

  • Kal, Kyoung-Wan;Lee, Deuck-Hang;Bang, Yong-Sik;Cho, Hae-Chang;Kang, Ju-Oh;Kim, Kang-Su
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.59-60
    • /
    • 2009
  • Steel fibers are recently well recognized for good composite/strengthening materials because of their ductile behavior and good performance on crack control and shear behavior compared to concrete materials. Especially, the great improvement in shear strength by steel fibers led researchers to be involved in many experimental studies. However, our understanding on the complex shear behavior of the steel fiber reinforced concrete(SFRC) members are still very limited, and the fundamental test data are also not enough. In this study, therefore, 4 SFRC specimens were fabricated and tested, from which the effectiveness of steel fibers as shear reinforcement were evaluated. The test results shows that the shear strength of SFRC members increases as the amount of steel fibers increases.

  • PDF

Seismic Performance of Shear Dominant Hybrid Steel Link Beam with Circular Web Opening (원형 개구부가 있는 전단지배 하이브리드 강재 연결보의 내진성능)

  • Lim, Woo-Young
    • Journal of Korean Society of Steel Construction
    • /
    • v.30 no.1
    • /
    • pp.37-48
    • /
    • 2018
  • Cyclic loading tests for shear dominant hybrid steel link beams with circular web openings were performed to evaluate the seismic performance. Four half-scaled specimens with bolted connections were tested. The test parameter is a diameter of the web opening, i.e., shear strength ratio ($V_{pw}/V_p$) of the link beam and presence of top-seat angles. Using test results, adequate design shear strength of link beam was finally suggested. Test results showed that when the shear capacity is less than half of the plastic shear strength, seismic performance was improved due to mitigation of pinching under reversed cyclic inelastic deformations.

Experimental Study on Improvement of Bond Performance of RC Beams with High-Strength Shear Reinforcement (고강도 전단철근을 사용한 철근콘크리트 보의 부착성능 향상에 관한 실험적 연구)

  • Kim, Sang-Woo;Kim, Do-Jin;Yoon, Hye-Sun;Baek, Sung-Cheol;Kim, Kil-Hee
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.4
    • /
    • pp.527-534
    • /
    • 2010
  • This study presents a simple method to improve the bond performance of reinforced concrete (RC) beams having high-strength shear reinforcement. In general, the yield strength and the ratio of shear reinforcements are the main parameters governing the shear capacity of RC beams. The yield strength of shear reinforcement, however, has little influence on the bond capacity of RC beams. Therefore, a sudden bond failure of the members with high-strength shear reinforcement can occur before flexural failure. To estimate the structural performance of the proposed method, four RC beams were cast and tested. The main test parameters were the yield strength, ratio, and reinforcing types of shear reinforcements. The experimental results indicated that the proposed method was able to effectively improve the bond performance of RC beams with high-strength shear reinforcement.

Nonlinear Behavior Analysis of RC Shear Wall Using Truss Theory (트러스 이론을 이용한 철근 콘크리트 전단벽의 비선형 거동해석)

  • Seo, Soo-Yeon;Kim, Jeong-Sik;Choi, Yun-Chul;Lee, Li-Hyung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.3
    • /
    • pp.213-220
    • /
    • 2005
  • Recently, a concern to verify the displacement capacity of shear wall has been arised to produce suitable data for the performance based design. In this paper, a process is presented to evaluate the displacement capacity of shear wall. The displacement of shear wall is expressed as the superposition of shear and flexural deformation. Variable crack angle truss model with a modification and sectional analysis method are used in calculating shear and flexural displacement, respectively. In addition, the effect of axial force and the contribution of vertical and horizontal reinforcements in wall are considered in the analysis. The accuracy of proposed method is evaluated by the comparison calculation results with previous test results. From the comparison, it was shown that the hysteretic behavior of shear wall could be well predicted by using the process. In the case with flange wall, however, the method overestimates the contribution of flange wall for strength and stiffness and underestimates for displacement capacity.

Shear Performance Evaluation of Composite Thermal Insulation with Quasi-Non-Combustible according to Adhesive Type (부착 유형에 따른 준불연 복합단열판 전단성능평가)

  • Choi, Ki-Sun;Oh, Keunyeong;Park, Keum-Sung;Ha, Soo-Kyung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.5
    • /
    • pp.507-518
    • /
    • 2022
  • The purpose of this research is to obtain experimental data for developing a structural design of an external insulation system by evaluating the shear performance of a composite insulation system according to the adhesive type. The shear performance of the composite insulation system was experimentally evaluated by considering a simultaneous placement method, full and spot/edge coverage using adhesive mortar. As a result of the test, the shear strength of simultaneous placement and full coverage method was almost similar, the spot/edge coverage method was about 80% of them. Also, the simultaneous placement method is considered to be constructively advantageous when applied as an external insulation system to a high-rise building compared to using an adhesive mortar.

An Experimental Study on Shear Behavior of Steel Fiber-Reinforced Ultra High Performance Concrete Beams (강섬유 보강 초고성능 콘크리트 보의 전단 거동에 관한 실험 연구)

  • Yang, In Hwan;Joh, Changbin;Lee, Jung Woo;Kim, Byung Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.1A
    • /
    • pp.55-64
    • /
    • 2012
  • Experimental investigation on the structural behavior of steel fiber-reinforced ultra high performance concrete (UHPC) beams subjected to shear are presented. Six tests carried out on simply supported I-beams under concentrated loads are presented. The parameters varied were the volume fraction of the fibers (1.0, 1.5 and 2.0%) and shear span-effective depth ratio (2.5, 3.4). The test results indicated that ultimate shear strength increased with increasing fiber volume, and that ultimate shear strength decreased with increasing shear span-effective depth ratio. In addition, applicability of predictive equations for evaluating the ultimate shear strength of steel fiber-reinforced UHPC beams are estimated based on the test results. The comparison between computed values and the experimentally observed values are shown to validate the proposed theoretical equations. It is found that predictions by using AFGC and JSCE recommendations provide the most accurate estimates of shear strength of steel fiber-reinforced UHPC beams.