• Title/Summary/Keyword: 전단벽시스템

Search Result 91, Processing Time 0.128 seconds

Calculation of Seismic Capacity Evaluation Index of Shear Wall System (전단벽 구조시스템의 내진성능평가 지표 산정)

  • Park, Tae-Won;Na, Seong-Uk;Woo, Woon-Taek;Chung, Lan
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.09a
    • /
    • pp.223-230
    • /
    • 2002
  • Earthquake resistance design has been developed many countries like Japan, USA, Mexico, New Zealand etc., which countries have experienced many earthquakes. Nowadays, earthquake resistance design has come into worldwide use. In Korea, the seismic design regulations have been established since 1988 in order to minimize the economic losses. Recently performance based design method has been adopted as a new Earthquake resistance design method. These regulations, however, are targeted for newly constructed buildings, In Korea, there are no regulations for existing buildings that built before 1988. On the other hand, in Japan and USA, the seismic performance evaluation is coded. In Japan, the evaluation index which can measure seismic performance has been made. So, we need to prepare the regulations that evaluate the seismic performance, furthermore proper retrofitting design guideline needs to be proposed when remodeling old buildings. In this research, various seismic performance evaluation methods which are being used in Japan and USA are reviewed in order to establish seismic performance evaluation index for those existing old structures in Korea.

  • PDF

Seismic Fragility Analysis of Reinforced Concrete Shear Walls Considering Material Deterioration (재료의 열화를 고려한 철근콘크리트 전단벽의 지진 취약도 분석)

  • Myung Kue, Lee;Jang Ho, Park
    • Journal of the Korean Society of Safety
    • /
    • v.37 no.6
    • /
    • pp.81-88
    • /
    • 2022
  • It is necessary to better understand the effect of age-related degradation on the performance of reinforced concrete shear walls in nuclear power plants in order to ensure their structural safety in the event of earthquakes. Therefore, this paper studies seismic fragility of the typical shear wall in nuclear power plants under earthquake excitation Reinforced concrete shear wall is composed of wall, horizontal and vertical flanges. Due to characteristics of its geometry, it is difficult to predict the ultimate behavior of shear wall under earthquake excitation. In this study, for more realistic numerical simulation, the Latin Hyper-Cube (LHC) simulation technique was used to generate uncertain variables for the material properties of concrete shear walls. The effects of crack, characteristics of inelastic behavior of concrete, and loss of cross section were considered in the nonlinear finite element analysis. The effects of aging-related deterioration were investigated on the performance of reinforced concrete shear walls through analysis of undegraded concrete shear walls and degraded concrete shear walls. The resulting seismic fragility curves present the change of performance of concrete shear wall due to age-related degradation.

Proposal for Optimal Position of Offset Outrigger System (오프셋 아웃리거 구조시스템의 최적 위치에 대한 제안)

  • Kim, Hyong-Kee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.6
    • /
    • pp.84-91
    • /
    • 2019
  • For the goal of the proposal for optimum position of offset outrigger system, a structural schematic design of 70 stories building was carried out, using the general structure analysis program of MIDAS-Gen. In this research, the primary factors of this analysis research were the shear wall stiffness, the frame stiffness, the outrigger stiffness, the stiffness of column linked in outrigger system, etc. To achieve the aim of this study, we analyzed and studied the lateral displacement in top level, the force distribution of outrigger, the existing model of optimal outrigger location, and so on. This paper proposed the optimal position of offset outrigger system. Furthermore it is considered that the study results can be useful in getting the structure engineering data for seeking the optimal position of offset outrigger in the tall building.

Cyclic Behavior of High-Performance Fiber-Reinforced Cement Composite Coupling Beam Having Diagonal Reinforcement (대각철근을 갖는 고성능 섬유보강 시멘트 복합체 연결보의 이력거동 평가)

  • Kwon, Hyun-Wook;Jeon, Yong-Ryul;Lee, Ki-Hak;Shin, Myung-Su;Han, Sang-Whan
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.6
    • /
    • pp.649-656
    • /
    • 2013
  • Coupled shear walls can provide an efficient structural system to resist lateral force. However, the reinforcement detail for diagonally reinforced coupling beams required by ACI-318 often causes the difficulties in construction due to the reinforcement congestion and interference among reinforcement. This paper is to evaluate cyclic behavior of High-Performance Fiber-Reinforced Cement Composite (HPFRCC) coupling beams having reduced transverse reinforcement around the beam perimeter. Experimental test was conducted using three specimens having a beam aspect ratio 2.0. Test results showed that HPFRCC coupling beams with half of transverse reinforcement required by ACI-318 provided similar energy dissipation capacities compared with the coupling beams having reinforcement satisfy the requirement of ACI-318.

Cyclic Behavior of Slender Reinforced Concrete Coupling Beams with Bundled Diagonal Reinforcement (묶음 대각철근을 갖는 세장한 철근콘크리트 연결보의 이력거동)

  • Han, Sang-Whan;Yoo, Kyoung-Hwan;Lee, Ki-Hak;Shin, Myoung-Su
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.6
    • /
    • pp.661-668
    • /
    • 2015
  • Coupled shear walls are effective lateral force resisting system in which coupling beams link individual walls. For improving the energy dissipation capacity of coupling beams, diagonal reinforcement details were developed. However, it is difficult to construct diagonal reinforced coupling beams due to the congestion of reinforcement in the beam. For resolving the problem, this study developed precast coupling beams with bundled diagonal reinforcement. To reduce the reinforcement congestion, bundled diagonal reinforcement were placed in the coupling beam. To evaluate the cyclic performance of coupling beams with bundled diagonal reinforcement, experimental test were conducted. For this purpose, two slender specimens with an aspect ratio of 3.5 were made and tested. It was observed that the cyclic performance of the coupling beam with bundled diagonal reinforcement was similar with that of the coupling beam with normal diagonal reinforcement placed according to design code to ACI 318-11.

A Study on Strength of Plat-Plate Wall-Column Connections (Wall Column을 적용한 플랫플레이트 접합부 강도발현에 관한 연구)

  • Lee, Do-Bum;Park, Hong-Gun;Lee, Li-Hyung
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.2 s.92
    • /
    • pp.257-266
    • /
    • 2006
  • Flat-plate building systems are utilized extensively for construction of apartments, hotels and office buildings because of short construction period, low floor-to-floor height and flexibility in plan design. Recently, to increase lateral seismic resistance of flat-plate building systems, wall-columns are used frequently. Therefore, to estimate strength of flat-plate column connection accurately, the effect of column section shape on the behavior of flat-plate column connection should be considered properly, In the present study, a numerical analysis was performed for interior connections of continuous flat-plate to analyze the effect of column section shape. For the purpose, a computer program for nonlinear FE analysis was developed, and the validity was verified. Through the parametric study, the variations of shear stress distribution around the connection were investigated. According to the result of numerical analysis, as the length of the cross section of column in the direction of lateral load increases, the effective area and the maximum shear strength providing the torsional resistance decrease considerably. Therefore, these effects should be considered properly to estimate the strength of flat-plate connection accurately.

Numerical Simulation of Three Dimensional Fluid Flow Phenomena in Cylindrical Submerged Flat Membrane Bioreactor for Aeration Rate (원통 침지형 평막 생물반응기 내 산기량에 따른 3차원 유동현상에 관한 수치모사)

  • Kim, Dae Chun;Chung, Kun Yong
    • Applied Chemistry for Engineering
    • /
    • v.25 no.4
    • /
    • pp.401-408
    • /
    • 2014
  • In membrane bio-reactor (MBR), the aeration control is one of the important independent variables to decrease fouling and to save energy with shear stress change on the membrane surface. The paper was carried out for numerical simulation of 3-dimensional fluid flow phenomena of the cylindrical bioreactor with submerged flat membranes equipped in the center and supplied the air from the bottom by using the COMSOL program. The viscosity and temperature of solution were assumed to be constant, and the specific air demand based on permeate volume ($SAD_p$) defined as scouring air per permeate rates was used as a variable. The calculated CFD velocities were compared with those of the velocity meter measurement and video image analysis, respectively. The results were good agreement each other within 11% error. For fluid flow in the reactor the liquid velocity increased rapidly between the air diffuser and membrane module, but the velocity decreased during flowing of the membrane module. Also, the velocity increased as it was near from the reactor wall to the central axis. The calculated shear stress on the membrane surface showed the highest value at the center part of the module bottom side and increased as aeration rate increased. Especially, the wall shear stress increased dramatically as the aeration rate increased from 0.15 to 0.25 L/min.

A Case Study on CO2 Uptake of Concrete owing to Carbonation (콘크리트 탄산화에 의한 CO2 포집량 평가의 사례연구)

  • Yang, Keun-Hyeok;Kim, Sang-Chel
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.1 no.1
    • /
    • pp.42-48
    • /
    • 2013
  • The present study assessed the amount of $CO_2$ uptake owing to concrete carbonation through a case study for an apartment building with a principal wall system and an office building with Rahmen system under different exposed environments during use phase and recycling application. The $CO_2$ uptake assessment owing to concrete carbonation followed the procedure established by Yang et al. As input data necessary for the case study, actual surveys conducted in 2012 in Korea, which included data about the climate environments, $CO_2$ concentration, lifecycle inventory database, life expectancy of structures, and recycling activity scenario, were used. From the comparisons with the $CO_2$ emissions from concrete production, the $CO_2$ uptake during the lifetime of structures was estimated to be 5.5~5.7% and that during recycling activity after demolition was 10~12%; as a result, the amount of $CO_2$ uptake owing to concrete carbonation can be estimated to be 15.5~17% of the $CO_2$ emissions from concrete production, which roughly corresponds to 18-21% of the $CO_2$emissions from cement production as well.

Modeling of Extrusion for Pectin Extraction from Apple Pomace (사과박의 펙틴 추출을 위한 압출 공정 모형화)

  • Cho, Yong-Jin;Kim, Chong-Tai;Kim, Chul-Jin;Hwang, Jae-Kwan
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.4
    • /
    • pp.1011-1016
    • /
    • 1999
  • This study was performed to search a physical method having high yield and quality and minimum environmental pollution for extraction of pectin from apple pomace. Based on the physical solubilization of plant cell wall under the condition of high temperature, pressure and shearing stress, apple pomace was treated by a corotating intermeshing type twin-screw extruder with the diameter-to-length ratio of 1/20. The specific mechanical energy of extruder was introduced as system parameter for extrusion process modeling and the shaft speed, feed rate and moisture content as process variables. The yield, average molecular weight and galacturonic acid content of water-soluble polysaccharides obtained by extrusion were, respectively, modeled with the linear functions of the system parameter which was of the form as a linear function of process variables. The specific mechanical energy increased with increase of shaft speed and with decrease of feed rate and moisture content. Out of process variables, moisture content had the greatest effect on specific mechanical energy. The yield increased with increase of specific mechanical energy while the average molecular weight and galacturonic acid content increased with its decrease. In aspects of yield and quality of pectin, the results from this study showed the possibility to replace a traditional acidic method with the extrusion treatment of this study.

  • PDF

Practical Design Method for Coupling Beams of Tall Buildings with Dual Frame System (이중골조형식 고층건물 커플링보의 실용설계)

  • Yoon, Tae-Ho;Kim, Jin-Sang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.1
    • /
    • pp.525-532
    • /
    • 2014
  • In this study, practical design method of coupling beams is proposed. The member forces varies according to the location of the members and the members at 25%~40% of building height shows large member forces. The 100mm increase of wall thickness causes 3~4% variation of member forces and the 100MPa increase of concrete strength decrease approximately 3% of member forces. The required strength of coupling beams is twice the resistant strength and 80% reduction of coupling beam stiffness is necessary to fulfill the design criteria. The stiffness reduction of coupling beams is not necessary over the entire stories and the strength reduction range can be estimated considering design requirements.