• Title/Summary/Keyword: 전단박하

Search Result 12, Processing Time 0.025 seconds

Relative Viscosity of Emulsions in Simple Shear Flow: Temperature, Shear Rate, and Interfacial Tension Dependence (전단유동에서 온도, 전단속도, 계면장력 변화에 따른 에멀전의 유변학적 특성)

  • Choi, Se Bin;Lee, Joon Sang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.8
    • /
    • pp.677-682
    • /
    • 2015
  • We simulate an emulsion system under simple shear rates to analyze its rheological characteristics using the lattice Boltzmann method (LBM). We calculate the relative viscosity of an emulsion under a simple shear flow along with changes in temperature, shear rate, and surfactant concentration. The relative viscosity of emulsions decreased with an increase in temperature. We observed the shear-thinning phenomena, which is responsible for the inverse proportion between the shear rate and viscosity. An increase in the interfacial tension caused a decrease in the relative viscosity of the decane-in-water emulsion because the increased deformation caused by the decreased interfacial tension significantly influenced the wall shear stress.

Shrinkage Behaviors of Polypropylene according to Product Form in Injection Molding (사출성형에서 제품 형상에 따른 PP수지의 수축거동)

  • Choi, Youn-Sik;Han, Dong-Yeop;Jeong, Yeong-Deug
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.3 no.3
    • /
    • pp.46-51
    • /
    • 2004
  • Nowadays, plastic industry has needed to produce parts that require high precision and quality. To make a high precision and quality part, before injection molding, plastic material in investigated about their properties such as shrinkage, warpage, etc. In this study, experiments were conducted with PP(polypiopylene) to figure out shrinkage behavior according to three type aspect ratio of samples. The injection speed that affects on shear late, molecular orientation within plastic part was determined as main variable of experiment. As a result of experimental study, part shrinkage had a tendency to be decreased by increasing injection speed and aspect ratio of samples.

  • PDF

Filling Imbalance of Elastomer TPVs in Injection Mold with Unary Branch Type Runner System (편측 분기형 러너시스템을 가진 사출금형에서 엘라스토머 TPV의 충전 불균형)

  • Han, Dong-Yeop;Jeong, Yeong-Deug
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.4
    • /
    • pp.47-52
    • /
    • 2008
  • Recently, the study for filling imbalance in thermoplastic polymer has gradually been increased. However, it is hard to find the researches for filling imbalance of thermoplastic elastomer(TPE). The experiment of filling imbalance was conducted for the three kinds of thermoplastic vulcanizes(TPVs) and PP polymer in the mold with geometrically balanced runner system(Unary Branch Type Runner System). In this experiment, the effects of the melt temperature, injection pressure and injection speed on the filling imbalance were investigated. There was also the imbalance in TPV injection molding process as well as in conventional injection molding with plastics. The tendency of filling imbalance in TPV injection molding specially decreased by taking place the hesitation of TPV melt.

A Theoretical Study for the Filling Balance of the Family Mold Using Variable-Runner System (가변 러너 시스템을 이용한 패밀리 금형의 충전밸런스에 관한 이론적 연구)

  • Choi, Kwon-Il;Park, Hyung-Pil;Cha, Baeg-Soon;Rhee, Byung-Ohk;Koo, Bon-Heung
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.275-278
    • /
    • 2007
  • In family mold, defects are frequently occurred by an excessive packing the smaller volume cavity during molding. Although runner size could be optimized by CAE analysis or experimental data, the filling imbalance is hardly avoided in the actual injection molding process by various means. Before this study, we developed a variable-runner system for balancing the cavity-filling for three resins (ABS, LDPE, and PA66) in the family-mold, and examined the effect of cross-sectional area reduction of a runner in the system. In this study, we examined the conditions of the pressure and temperature in the system with a CAE analysis. We also analyzed the influence of the rheological characteristic of resins to the balancing-capability of the system in order to help mold designers easily adopt the variable-runner system to their design.

  • PDF

Study on the Physical and Rheological Properties of Nylon66/MWCNT Composites (나일론66/MWCNT 복합체 물성 및 유변학적 특성 연구)

  • Kim, Do Eui;Kim, Youn Cheol
    • Applied Chemistry for Engineering
    • /
    • v.24 no.2
    • /
    • pp.214-218
    • /
    • 2013
  • Nylon66/multi-walled carbon nano tube (MWCNT) composites were fabricated by twin screw extruder. The contents of MWCNT were 1, 3, 5, and 7 wt%. Thermal properties, dispersion, rheological and impact properties were measured by DSC, TGA, X-ray diffraction (XRD), SEM, Dynamic rheometer, and Izod impact tester. The effect of MWCNT on the non-isothermal crystallization of Nylon66 was confirmed by DSC. The complex viscosity at low frequency and the shear thinning tendency of the composites increased with MWCNT content. An increase in the elasticity was confirmed from the decrease in the slop of G'-G" plot. Izod impact strengths of the composites were analyzed as a measure of mechanical properties, which indicated that the composites exhibit a 60% enhancement for the impact strength when 3 wt% MWCNT was added. The dispersion of MWCNT within Nylon66/MWCNT composites was also checked by SEM.

Improvement on Interfacial, Thermal, and Water Resistance Properties of Wood Sandwich Composites for Stone Bed using CNT-Animal Glue Adhesive (탄소나노튜브/아교 접착제를 이용한 돌침대용 목재 샌드위치 복합재의 계면, 열적 및 방수특성 증가)

  • Kim, Jong-Hyun;Kwon, Dong-Jun;Shin, Pyeong-Su;Baek, Yeong-Min;Park, Ha-Seung;Moon, Sun-Ok;Park, Joung-Man
    • Composites Research
    • /
    • v.30 no.4
    • /
    • pp.235-240
    • /
    • 2017
  • Animal glue, a water-soluble adhesive, has been used historically for high-performance traditional furniture despite the disadvantage of weakness against moisture. Many scientists studied the ways to improve water resistance of animal glue. Improvements on the interfacial, thermal, and water resistance properties of wood sandwich composites (WSC) was studied with carbon nanotube (CNT) wt% in animal glue. Real-time temperature of WSC was measured after WSC was heated with increasing CNT wt%. Lap shear test was performed to determine the interfacial properties of wood and animal glue with CNTs. Water resistance properties of animal glue were determined by lap shear test using specimens dipped in water and the results were compared with the dry case. Hydrophobicity of animal glue by static contact angle was correlated with the variation of lap shear test. Interfacial, thermal, and water resistance properties for animal glue were improved with properly added CNTs.

Effect of Maleic Ahydride Grafted PP on the Physical Properties of PP/Pulp Composites (PP/펄프 복합체의 물성에 미치는 말레인산무수물 그래프트 PP의 영향)

  • Lee, Jong Won;Kim, Won Gil;Kim, Youn Cheol
    • Polymer(Korea)
    • /
    • v.38 no.5
    • /
    • pp.566-572
    • /
    • 2014
  • Maleic anhydride (MAH) grafted polypropylenes (PP) (MAH-g-PP) were prepared by changing MAH content and styrene monomer (SM)/MAH mole ratio with different type PP, using a twin screw extruder. The types of PP were isotatic PP (iPP), block PP (bPP), and random PP (rPP) and dicumyl peroxide (DCP) was used as an initiator. The graft degree of MAH was confirmed by the existence of carbonyl group (C=O) stretching peak at $3100cm^{-1}$ of FTIR spectrum. Thermal properties of MAH-g-PP and PP/MAH-g-PP/pulp composites were investigated by DSC and TGA. There was no district change in thermal properties of PP/MAH-g-PP/pulp composites. Based on tensile properties and SEM pictures for fractured surface of PP/MAH-g-PP/pulp composites, MAH-g-rPP was the best as the compatibilizer and optimum formulation was MAH content of 1.0 wt%, SM/MAH mole ratio of 1.0, and melt index (MI) of 25 g/10 min. The rheological properties of the composites were investigated by a dynamic rheometer. The complex viscosity, shear thinning effect, and water uptake incresed with pulp content.

Effect of Styrene and Maleic Anhydride Content on Properties of PP/Pulp Composites and Reactive Extrusion of Random PP (랜덤 PP의 반응압출 및 PP/Pulp 복합체 특성에 대한 스티렌과 무수말레인산 함량의 영향)

  • Lee, Jong Won;Kim, Ji Hyun;Kim, Youn Cheol
    • Applied Chemistry for Engineering
    • /
    • v.25 no.3
    • /
    • pp.318-323
    • /
    • 2014
  • In order to analyze the effect of maleic anhydride (MAH) content and styrene monomer (SM)/MAH mole ratio on reactive extrusion of maleic anhydride grafted random polypropylenes (MAH-g-rPP), MAH-g-rPPs were prepared by using a twin screw extruder. MAH contents were 0.5, 1.0, 3.0, and 5.0 phr and SM/initiator mole ratio was 0.0, 1.0, and 2.0. Dicumyl peroxide (DCP) was used as an initiator. The graft degree of MAH was confirmed by the existence of carbonyl group (C = O) stretching peak at $1700cm^{-1}$ from FT-IR spectrum. The degree of graft reaction increased up to 3.0 phr MAH and showed the optimum value at 1.0 SM/MAH mole ratio from the area ratio of C = O and C-H stretching peak. Thermal and crystallization properties of MAH-g-rPP and PP/MAH-g-rPP/pulp composites were investigated by DSC, TGA, XRD, and POM. There was a decrease in non-isothermal crystallization temperature of PP/MAH-g-PP/pulp composites. Based on tensile properties and SEM pictures for the fractured surface of PP/MAH-g-PP/pulp composites, MAH content of 1.0 wt% and SM/MAH mole ratio of 1.0 were the optimum formulation as the compatibilizer. The rheological properties of the composites were measured by dynamic Rheometer to compare the processability of the composites with and without compatibilizer. The power law index showed slightly low value at the composites with compatibilizer.

The Effect of Interfacial Properties and RTM Process of Composites with Different Cross-linking Density by Molecular Weight of Hardener (경화제의 분자량에 의한 가교밀도 차이에 따른 복합재료의 계면 물성 및 RTM 성형성에 미치는 영향)

  • Park, Ha-Seung;Shin, Pyeong-Su;Kim, Jong-Hyun;Baek, Yeong-Min;Kwon, Dong-Jun;Park, Joung-Man
    • Composites Research
    • /
    • v.30 no.3
    • /
    • pp.169-174
    • /
    • 2017
  • Demand of glass fiber reinforced composites (GFRC) increased with developing aircraft and defense industries using resin transfer molding (RTM) process to produce complex product. In this research, wetting, interfacial, and mechanical properties were evaluated with different Cross-linking Density by Molecular Weight of Hardener. Epoxy resin as matrices was used bisphenol-A type and amine-type hardeners with different molecular weight. Specimens were manufactured via RTM and wetting property of resin and glass fiber (GF) mat was evaluated to viscosity of epoxy and injection time of epoxy matrix. Mechanical property of GFRC was determined via flexural strength whereas interfacial properties were determined by interlaminar shear strength (ILSS) and interfacial shear strength (IFSS). The difference in mechanical property depends upon the fiber weight fraction (wt %) of GFRC by RTM as well as the different Molecular Weight of Hardener.

The Change in Interfacial and Mechanical Properties for Glass Fiber/p-DCPD Composites with Degree of Ruthenium Catalyst Activation (루테늄촉매 활성정도에 따른 유리섬유/폴리다이사이클로펜타다이엔 복합재료의 기계 및 계면물성 변화)

  • Shin, Pyeong-Su;Kim, Jong-Hyun;Baek, Yeong-Min;Park, Ha-Seung;Kwon, Dong-Jun;Park, Joung-Man
    • Journal of Adhesion and Interface
    • /
    • v.19 no.1
    • /
    • pp.13-18
    • /
    • 2018
  • At ruthenium (Ru) catalyst was exposed from the atmosphere, the degree of catalyst activation decreased. The change of catalyst activity with the number of days of exposure to air for the Ru catalyst was confirmed using the surface tension method quantitatively. Mechanical properties and surfactant change after polymerization by DCPD using Ru catalyst for each air exposure day was evaluated. The Ru catalyst mixed with a dilution agent was exposed in the air and color was monitored for each day. Surface tension was measured using Wilhelmy and PTFE and associated with different catalyst activities. Heat was measured in real time during polymerizing DCPD with Ru catalyst. After polymerization, tensile strength was measured for p-DCPD and the change of material property was measured. Interfacial properties were also evaluated via microdroplet pull-out tests between glass fiber and p-DCPD. The surface tension was stable until the 4 days (33 dyne/cm) whereas the surface energy increased at the 10 days (34 dyne/cm), which could be correlated with oxidation of the catalyst. Tensile property and interfacial shear strength (IFSS) was also stable until the 4 days (tensile strength: 38 MPa and IFSS: 26 MPa) whereas the mechanical property decrease at 10 days (tensile strength: 15 MPa and IFSS: 3 MPa) dramatically.