• Title/Summary/Keyword: 전단머리

Search Result 37, Processing Time 0.022 seconds

An Experimental Study of Demountable Bolted Shear Connectors for the Easy Dismantling and Reconstruction of Concrete Slabs of Steel-Concrete Composite Bridges (강합성 교량의 콘크리트 바닥판 해체 및 재시공이 용이한 분리식 볼트접합 전단연결재에 관한 실험적 연구)

  • Jung, Dae Sung;Park, Se-Hyun;Kim, Tae Hyeong;Kim, Chul Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.6
    • /
    • pp.751-762
    • /
    • 2022
  • Welded head studs are mainly used as shear connectors to bond steel girders and concrete slabs in steel-concrete composite bridges. For welded shear connectors, environmental problems include noise and scattering dust which are generated during the removal of damaged or aged slabs. Therefore, it is necessary to develop demountable shear connectors that can easily replace aged concrete slabs for efficient maintenance and thus for better management of environmental problems and life cycle costs. The buried nut method is commonly studied in relation to bolted shear connectors, but this method is not used in civil structures such as bridges due to low rigidity, low shear resistance, and increased initial slip. In this study, in order to mitigate these problems, a demountable bolted shear connector is proposed in which the buried nut is integrated into the stud column and has a tapered shape at the bottom of an enlarged column shank. To verify the performance of the proposed demountable stud bolts in terms of static shear strength and slip displacement, a horizontal shear test was conducted, with the performance outcomes compared to those of conventional welded studs. It was confirmed that the proposed demountable bolted shear connector is capable of excellent shear performance and that it satisfies the slip displacement and ductility design criteria, meaning that it is feasible as a replacement for existing welding studs.

Structural Performance of Beam-Column Connections Using 51 mm Diameter with Different Anchorage Details (51 mm 대구경 철근을 사용한 외부 보-기둥 접합부의 정착상세별 구조성능 평가)

  • Kim, Jung-Yeob;Jung, Hyung-Suk;Chun, Sung-Chul;Kim, In-Ho;Choi, Chang-Sik
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.2
    • /
    • pp.201-208
    • /
    • 2017
  • In exterior beam-column joints, hooked bars are used for anchorage, but usage of high-strength and large-diameter bars increases, headed bar is preferred for solving steel congestion and difficulty in construction. To investigate the structural performance of headed bars, Six exterior beam-column joints were tested under cyclic loading. Tests parameter were the anchorage methods and concrete strength. The test results indicate that behavior of headed bar specimens shows similar performance with hooked bar specimens. All specimens failed by flexural failure of the beam. Headed bar specimens shows better performance in anchorage and joint shear. All specimens were satisfied the criteria of ACI374.1-05. Test results indicate that use of headed bar in exterior beam column joint is available.

Pull-out Test of Steel Pipe Pile Reinforced with Hollow Steel Plate Shear Connectors (유공강판 전단연결재로 보강된 강관말뚝 머리의 인발실험)

  • Lee, Kyoung-Hun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.12
    • /
    • pp.285-291
    • /
    • 2016
  • The purpose of this study was to evaluate the structural capacity of steel pipe pile specimens reinforced with hollow steel plate shear connectors by pull-out test. Compressive strength testing of concrete was conducted and yield forces, tensile strengths and elongation ratios of re-bars and hollow steel plate were investigated. A 2,000kN capacity UTM was used for the pull-out test with 0.01mm/sec velocity by displacement control method. Strain gauges were installed at the center of re-bars and hollow steel plates and LVDTs were also installed to measure the relative displacement between the loading plate and in-filled concrete pile specimens. The yield forces of the steel pipe pile specimens reinforced with hollow steel plate shear connectors were increased 1.44-fold and 1.53-fold compared to that of a control specimen, respectively. Limited state forces of steel pipe pile specimens reinforced with hollow steel plate shear connectors were increased 1.23-fold and 1.29-fold compared to that of a control specimen, respectively. Yield state displacement and limited state displacement of steel pipe pile specimens reinforced with hollow steel plate shear connector were decreased 0.61-fold and 0.42-fold compared to that of a control specimen, respectively.

Quality Characteristics of Replacing Pork Hind Leg with Pork Head Meat for Hamburger Patties (돈육 후지를 머리고기로 대체한 햄버거 패티의 품질 특성)

  • Choi, Yun-Sang;Jeon, Ki-Hong;Ku, Su-Kyung;Sung, Jung-Min;Choi, Hyun-Wook;Seo, Dong-Ho;Kim, Cheon-Jei;Kim, Young-Boong
    • Korean journal of food and cookery science
    • /
    • v.32 no.1
    • /
    • pp.58-64
    • /
    • 2016
  • The effects of reducing pork hind legs concentrations from 80% to 60% and replacing the pork head meat with up to 20% pork head meat were investigated based on chemical composition, cooking characteristics, physicochemical properties, shear force, and sensory characteristics of hamburger patties. The increasing the pork head levels from 0% to 20% increased the protein content, pH, reduction in diameter, reduction in thickness, and shear force of hamburger patties, but decreased the moisture content, lightness, redness, yellowness, cooking yield, and water holding capacity of hamburger patties. The fat and ash contents of the hamburger patties with different amounts of pork hind legs and pork head showed no significantly different sensory characteristics from the control and all the treatments (p>0.05). The hamburger patties with increasing pork head levels had lower color, flavor, juiciness, and overall acceptability scores, but the overall acceptability of control showed similar trends to T1 and T2. Therefore, replacing pork hind legs with pork head meat in the formulation was successfully similar to control hamburger patties, with best results obtainedon replacing up to 10% pork head meat.

Enhancement of Sound Image Localization on Vertical Plane for Three-Dimensional Acoustic Synthesis (3차원 음향 합성을 위한 수직면에서의 음상 정위 향상)

  • 김동현;정하영;김기만
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.3 no.3
    • /
    • pp.541-546
    • /
    • 1999
  • The head-related transfer function (HRTF), which expresses the acoustic process from the sound source to the human ears in the free field, contains critical informations which the location of the source can be traced. It also makes it possible to realize multi-dimensional acoustic system that can approximately generate non-existing sound source. The use of non-individual, common HRTF brings performance degradation in localization ability such as front-back judgment error, elevation judgment error. In this paper, we have reduced the error on vertical plane by increasing the spectral notch level. The performance of the proposed method was Proved through subjective test that it is Possible to improve the ability to locate stationary/moving source.

  • PDF

A Parameter Analysis for Pull-out and Push-out Behavior of Steel Pipe Pile Cap with the Open Type Perfobond (개방형 퍼포본드로 보강된 강관말뚝머리의 인발 및 압발거동에 관한 매개변수 해석)

  • Kim, Young-Ho;Kang, Jae-Yoon;Yoo, Seung-Woon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.6A
    • /
    • pp.661-669
    • /
    • 2009
  • Various kinds of shear connectors such as headed stud, channel, perforated steel plate and others are commonly used to transfer stress and conduct composite performance in steel concrete composite structures, and many researches have been conducted to improve the characteristics of different types of shear connectors. It is focused in this study on the pull-out and pushout performance of steel pipe pile cap with the open type perfobond for the composite connection to the spread footing. A parameter analysis was conducted, using ABAQUS, a nonlinear finite element analysis program, to obtain data for determining the characteristics of the structure and to allow various parametric analyses of steel pipe cap with the open perfobond.

Analysis on the Rigid Connections of the Drilled Shaft with the Cap for Multiple Pile Foundations (현장타설말뚝을 적용한 다주식 기초에서 말뚝과 캡의 강결합에 대한 분석)

  • Cho, Sung-Min
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.7
    • /
    • pp.61-73
    • /
    • 2008
  • Piles of a bridge pier are connected with the column through the pile cap (footing). Behavior of the pile foundation can be different according to the connection method between piles and the pile cap. Connection methods between pile heads and the pile cap are divided into two groups : rigid connections and hinge connections. Domestic design code has been specified to use rigid connection method for the highway bridge. In the rigid connection method, maximum bending moment of a pile occurs at the pile head and this helps the pile to prevent the excessive displacement. Rigid methods are also good to improve the seismic performance. However, some specifications prescribe that conservative results through investigations of both the fixed-head condition and the free-head condition should be reflected in the design. This statement may induce an over-estimated design for the bridge which has high-quality structures with casing covered drilled shafts and the PC-house contained pile cap. Because the assumption of free-head conditions (hinge connections) is unreal for the elevated pile cap system with multiple piles of the long span sea-crossing bridges. On the other hand, elastic displacement method to evaluate the pile reactions under the pile cap is not suitable for this type of bridges due to impractical assumptions. So, full modeling techniques which analyze the superstructure and the substructure simultaneously should be performed. Loads and stress state of the large diameter drilled shaft and the pile cap for Incheon Bridge which will be the longest bridge of Korea were investigated through the full modeling for rigid connection conditions.

Shear Behavior of Slender HSC Beams Reinforced with Stirrups using Headed Bars, High Strength Steels, and CFRP Bars (헤디드 바, 고장력 철근 및 CFRP 바로 전단보강된 세장 고강도콘크리트 보의 전단 거동 평가)

  • Yang, Jun-Mo;Kwon, Ki-Yeon;Choi, Hong-Shik;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.6
    • /
    • pp.717-726
    • /
    • 2007
  • If conventional reinforcements are used for high-strength concrete (HSC) structures, a large amount of the reinforcement must be required to compensate for the brittleness of HSC and make the best use of HSC. This raises some structural problems such as steel congestion and an increase in self-weight. Therefore, alternative reinforcing materials and methods for HSC structures are needed. In this study, four full-scale beam specimens constructed with HSC (100 MPa) were tested to investigate the effect of the different shear reinforcements on the shear behavior. These four specimens were reinforced for shear stirrups with normal and high strength steels, headed bars, and carbon fiber-reinforced polymer (CFRP) bars, respectively. In addition, steel fibers were added to the HSC in the two of the specimens to observe their beneficial effects. The use of high strength steels resulted in the improvement of the shear capacity since the shear resistance provided by the shear reinforcements and the bond strength were increased. The specimen reinforced with headed bars also showed a superior performance to the conventional steel reinforced specimen due to the considerably high anchorage strength of headed bar. CFRP bars used in this research, however, seemed to be inadequate for shear reinforcement because of the inferior bond capacity. The presence of the steel fibers in concrete led to remarkable improvement in the ductility of the specimens as well as in the overall cracks control capability.

Evaluation of Structural Behavior of Reinforced Concrete Exterior Beam-Column Joints with High-Strength Concrete (고강도 콘크리트를 사용한 철근콘크리트 외부 보-기둥 접합부의 거동 평가)

  • Lee, Bum-Sik;Kim, Kyung-Duk;Kim, Sang-Woo;Kim, Kil-Hee;Lee, Jung-Yoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.6
    • /
    • pp.72-81
    • /
    • 2014
  • This paper reports the test results of reinforced concrete exterior beam-column joints with high-strength concrete. The main parameters of eight specimens were joint failure modes, the compressive strength of concrete, and the head shapes of steel bars. All specimens were designed according to ACI 352R-02 design recommendations. Two types of failure modes were considered; J-failure and BJ-failure. The longitudinal steel bars were anchored by 90 degree standard hooks or headed reinforcement. Experimental results indicated that the current ACI design recommendation limited by the compressive strength of concrete somewhat underestimated the strength of beam-column joints with high-strength concrete. In the specimens showed joint shear failure, the strength of beam-column joints with headed bars was approximately 10 percent higher than that of joints with 90 degree standard hooks.

Analysis of the Diffuse Axonal Injury of the Human Brain using Finite Element Model (유한요소 모델을 이용한 인간 뇌의 미만성 부상에 대한 해석)

  • Kim, Yeong-Eun;Nam, Dae-Hun
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.6
    • /
    • pp.603-609
    • /
    • 1998
  • To anlyze the diffuse axonal injury of the human brain, 3-D finite element models of the adult, two and three years child were developed. Triangular type acceleration which had its maximum value 200g was applied to investigate the effects of acceleration direction and duration time. The pattern of high shear stress generated at the brain stem, pones and midbrain was similar to the pattern of DAI seen in the clinical observation, especially high maximum shear stress was detected in the brain stem of the six year old child model under flexional acceleration. As the duration of acceleration increased generated pressure and maximum shear stress also increased. For the children's model relatively small pressure was generated regardless of the acceleration direction and continued much longer compared with adult's model. From this analysis maximum shear stress was revealed more proper indicator to predict DAI compared to HIC in case of angular acceleration loading.

  • PDF