• Title/Summary/Keyword: 전기-열해석

Search Result 379, Processing Time 0.026 seconds

A Study of Thermo-Mechanical Behavior and Its Simulation of Silicon Nitride Substrate on EV (Electronic Vehicle)'s Power Module (전기자동차 파워모듈용 질화규소 기판의 열기계적 특성 및 열응력 해석에 대한 연구)

  • Seo, Won;Jung, Cheong-Ha;Ko, Jae-Woong;Kim, Gu-Sung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.4
    • /
    • pp.149-153
    • /
    • 2019
  • The technology of electronic packaging among semiconductor technologies is evolving as an axis of the market in its own field beyond the simple assembly process of the past. In the field of electronic packaging technology, the packaging of power modules plays an important role for green electric vehicles. In this power module packaging, the thermal reliability is an important factor, and silicon nitride plays an important part of package substrates, Silicon nitride is a compound that is not found in nature and is made by chemical reaction between silicon and nitrogen. In this study, this core material, silicon nitride, was fabricated by reaction bonded silicon nitride. The fabricated silicon nitride was studied for thermo-mechanical properties, and through this, the structure of power module packaging was made using reaction bonded silicon nitride. And the characteristics of stress were evaluated using finite element analysis conditions. Through this, it was confirmed that reaction bonded silicon nitride could replace the silicon nitride as a package substrate.

IoT Basic Study on Development of Duct Burner Integrated with SCR Catalyst (SCR 촉매 일체형 덕트 버너 개발에 대한 IoT 기초연구)

  • Jang, Sung-Cheol;Shim, Yo-Seop
    • Journal of Internet of Things and Convergence
    • /
    • v.7 no.3
    • /
    • pp.75-80
    • /
    • 2021
  • Since the optimization of the diesel engine for the ship cannot satisfy the NOx emission limit by the method of reducing the NOx emission, it is necessary to reduce the NOx by post-processing the exhaust gas. In this study, we will review the feasibility of designing a binary nozzle and mixing chamber duct for effectively converting the number of elements into NH3 in the oil burner for the SCR catalyst unit integrated duct in the ship under development through the computational heat flow analysis for the velocity distribution and temperature distribution.

The Design Method of TR Module Based GaN for Satellite (실용위성 적용을 위한 GaN 기반 TR모듈 설계 기법)

  • Yang, Ho-Jun;Lee, Yu-ri;Cho, Seongmin;Yu, Kyungdeok;Kim, Jong-Pil
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.1
    • /
    • pp.31-38
    • /
    • 2022
  • TR module using in satellite must consider discriminative electrical and mechanical requirements compare to the one using in ground and aircraft system since not only the environment level of vibration and shock during the launch stage but also the level of radiation, vacuum and thermal variation from orbit environment are more severe than atmosphere condition. This paper describes the environmental conditions of launch and the orbit and, suggests design method of TR module applying GaN to satisfy the unique environmental requirements of satellite systems by especially focusing on parts selection, derating design, RF budget design, manufacturing process design, and thermal design of TR module.

Principal Component Analysis for the Growth Data of Rice (주성분분석을 이용한 수도의 생장해석)

  • Hahn, Weon-Sik;Chae, Yeong-Am
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.31 no.2
    • /
    • pp.173-178
    • /
    • 1986
  • Principal component analysis was used for ana1zing growth data to know the relationship between growth characteristics and yield as well as its components. The first principal component accounted for average time of the specific leaf area sampled, leaf area index, and dry weight, and the second component for the position of the changing point of growth characteristics. The component scores were more affected by the nitrogen level than variety. Yield were affected by fertility ratio and number of spikelets per hill which have close relation with the component score of leaf area index and dry weight per hill.

  • PDF

Study on Improvement of Dimensional Accuracy of a Precision Plastic Screw Under Various Injection-Molding Conditions (사출성형 조건에 따른 정밀 플라스틱 나사의 형상정밀도 향상에 관한 연구)

  • Baek, Soon-Bo;Park, Keun;Youm, Chung-Ho;Ra, Seung-Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.10
    • /
    • pp.1549-1554
    • /
    • 2010
  • Recently, plastic screws have replaced metal screws because of the former's light weight, thermal and electrical insulating properties, and anticorrosion characteristics. Plastic screws are usually produced by injection molding, which involves material shrinkage during the solidification of the polymer. This shrinkage results in the degeneration of the dimensional accuracy. In the present study, the effect of injection-molding conditions on the dimensional accuracy of plastic screws was investigated through a numerical simulation of injection molding; on the basis of this simulation, we could determine the mold-design parameters. The design of experiment was applied in accordance with the numerical analysis in order to optimize the injection-molding conditions with a view to improving the dimensional accuracy of the precision plastic screw.

Study on the Design of a Rotary-type LSM and Test Equipment for Design Verification of LSM for Ultra-high-speed Train (초고속열차용 LSM 설계 검증을 위한 회전형 구조의 LSM 및 시험기 설계 연구)

  • Park, Chan-Bae
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.2
    • /
    • pp.196-202
    • /
    • 2017
  • A very long test track is required for high-speed operation test of the real-scale Linear Synchronous Motor (LSM) for ultra-high-speed trains. The required length results in huge construction cost and economic loss if any error occurs during development. Therefore, validation study of the LSM design technology using a low-cost small-scale model must be carried out in the early research stages. It is possible to deduce an optimal winding method for the armature and determine the mechanical properties of the LSM through a performance tester that applies a rotary-type small-scale LSM model. In addition, it is possible to utilize previous research on LSM control systems. Therefore, a basic design model, comprising a rotary-type LSM tester that meets the requirements for the propulsion of 600km/h-class ultra-high-speed trains, is derived in this study. Finally, an optimal model, which has a stable structure under the condition of 1500rpm or more high-speed rotation, is derived by electromagnetic and mechanical stiffness analysis.

Consequence Analysis of Toxic Gases Generated by Fire of Lithium Ion Batteries in Electric Vehicles (전기자동차 내 리튬이온전지 화재로 발생하는 독성가스의 위험성 분석)

  • Oh, Eui-young;Min, Dong Seok;Han, Ji Yun;Jung, Seungho;Kang, Tae-sun
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.1
    • /
    • pp.54-61
    • /
    • 2019
  • As the market for portable electronic devices expands, the demand for Lithium Ion Battery (LIB) is also increasing. LIB has higher efficiency than other secondary batteries, but there is a risk of explosion / fire due to thermal runaway reaction. Especially, Electric Vehicles (EV) equipped with a large capacity LIB cell also has a danger due to a large amount of toxic gas generated by a fire. Therefore, it is necessary to analyze the risk of toxic gas generated by EV fire to minimize accident damage. In this study, the flow of toxic gas generated by EV fire was numerically analyzed using Computational Fluid Dynamic. Scenarios were established based on literature data and EV data to confirm the effect distance according to time and exposure standard. The purpose of this study is to analyze the risk of toxic gas caused by EV fire and to help minimize the loss of life and property caused by accidents.

A Case Study of Different Configurations for the Performance Analysis of Solid Oxide Fuel Cells with External Reformers (외부 개질형 평판형 고체 산화물 연료전지 시스템 구성법에 따른 효율특성)

  • Lee, Kang-Hun;Woo, Hyun-Tak;Lee, Sang-Min;Lee, Young-Duk;Kang, Sang-Gyu;Ahn, Kook-Young;Yu, Sang-Seok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.3
    • /
    • pp.343-350
    • /
    • 2012
  • A planar solid oxide fuel cell (PSOFC) is studied in its application in a high-temperature stationary power plant. Even though PSOFCs with external reformers are designed for application from the distributed power source to the central power plant, such PSOFCs may sacrifice more system efficiency than internally reformed SOFCs. In this study, modeling of the PSOFC with an external reformer was developed to analyze the feasibility of thermal energy utilization for the external reformer. The PSOFC system model includes the stack, reformer, burner, heat exchanger, blower, pump, PID controller, 3-way valve, reactor, mixer, and steam separator. The model was developed under the Matlab/Simulink environment with Thermolib$^{(R)}$ modules. The model was used to study the system performance according to its configuration. Three configurations of the SOFC system were selected for the comparison of the system performance. The system configuration considered the cathode recirculation, thermal sources for the external reformer, heat-up of operating gases, and condensate anode off-gas for the enhancement of the fuel concentration. The simulation results show that the magnitude of the electric efficiency of the PSOFC system for Case 2 is 12.13% higher than that for Case 1 (reference case), and the thermal efficiency of the PSOFC system for Case 3 is 76.12%, which is the highest of all the cases investigated.

Development and Validation of Digital Twin for Analysis of Plant Factory Airflow (식물공장 기류해석을 위한 디지털트윈 개발 및 실증)

  • Jeong, Jin-Lip;Won, Bo-Young;Yoo, Ho-Dong;Kim, Tag Gon;Kang, Dae-Hyun;Hong, Kyung-Jin
    • Journal of the Korea Society for Simulation
    • /
    • v.31 no.1
    • /
    • pp.29-41
    • /
    • 2022
  • As one of the alternatives to solve the problem of unstable food supply and demand imbalance caused by abnormal climate change, the need for plant factories is increasing. Airflow in plant factory is recognized as one of important factor of plant which influence transpiration and heat transfer. On the other hand, Digital Twin (DT) is getting attention as a means of providing various services that are impossible only with the real system by replicating the real system in the virtual world. This study aimed to develop a digital twin model for airflow prediction that can predict airflow in various situations by applying the concept of digital twin to a plant factory in operation. To this end, first, the mathematical formalism of the digital twin model for airflow analysis in plant factories is presented, and based on this, the information necessary for airflow prediction modeling of a plant factory in operation is specified. Then, the shape of the plant factory is implemented in CAD and the DT model is developed by combining the computational fluid dynamics (CFD) components for airflow behavior analysis. Finally, the DT model for high-accuracy airflow prediction is completed through the validation of the model and the machine learning-based calibration process by comparing the simulation analysis result of the DT model with the actual airflow value collected from the plant factory.

A Study on the melting Characteristics of Fuse Element by Repeating Overcurrent (반복과전류에 의한 퓨즈 엘리먼트의 용단특성에 관한 연구)

  • Kim, Youn-Hyun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.2
    • /
    • pp.120-126
    • /
    • 2010
  • This paper propose analysis and examination of the melting characteristic of fuse elements by repeating overcurrent as a depletion factor of high pressure current limiting fuse through test following existence and nonexistence of extinction material and various configuration of elements. To examine deterioration progress rate by repeating overcurrent we analyzed heat for various element notching configuration, designed plate type, ring type element and estimated the relationship with life span by analyzing breaking characteristic through repeating overcurrent test with adjusting load factor at Silicon Dioxide(SiO2) filled state or in air. A Crack by repeat stress, decrease of section and transformation by friction with extinction material by repeating overcurrent causes a problem which shortens life span based on fuse repeating frequency. Since the contents of this paper might be useful to research the correlation between friction of materials and repeating life span based on load factor of repeating current, the quality of product would be improved through solution of the problem.