• Title/Summary/Keyword: 전기 화학적 부식

Search Result 350, Processing Time 0.03 seconds

Evaluation of the corrosion property on the welded zone of forged steel piston crown with types of filler metals (용접재료별 단강 피스톤 크라운 용접부위의 부식특성에 대한 평가)

  • Moon, Kyung-Man;Won, Jong-Pil;Lee, Myeong-Hoon;Baek, Tae-Sil;Kim, Jin-Gyeong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.4
    • /
    • pp.409-417
    • /
    • 2014
  • Since the oil price has been significantly jumped for recent some years, the diesel engine of the merchant ship has been mainly used the heavy oil of low quality. Thus, it has been often exposed to severely corrosive environment more and more because temperature of the exhaust gas in a combustion chamber is getting higher and higher with increasing of using the heavy oil of low quality. As a result, wear and corrosion of most parts surrounded with combustion chamber is more serious compared to the other parts of the engine. Therefore, an optimum weldment for these parts is very important to prolong their lifetime in a economical point of view. In this study, four types of filler metals such as Inconel 625, 718, 1.25Cr-0.5Mo and 0.5Mo were welded with SMAW and GTAW methods in the forged steel which would be generally used with piston crown material. And the corrosion properties of weld metal, heat affected zone and base metal were investigated using electrochemical methods such as measurement of corrosion potential, anodic polarization curves, cyclic voltammogram and impedance etc. in 35% H2SO4 solution. The weld metal and base metal exhibited the best and worst corrosion resistance in all cases of filler metals. In particular, the weld metal welded with filler metals of Inconel 718 revealed the best corrosion resistance among the filler metals, and Inconel 625 followed the Inconel 718. Hardness relatively indicated higher value in the weld metal compared to the base metal. Furthermore, Inconel 625 and 718 indicated higher values of hardness compared to 1.25cr-0.5Mo and 0,5Mo filler metals in the weld metal.

Microstructure modification and electrochemical properties of steel corrosion in the blended cement systems containing internal chlorides (고농도 염화물을 함유하는 혼합시멘트 계에서 철근부식에 따른 미세구조의 변화와 전기화학적 특성)

  • 나종윤;이승헌;김창은
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.131-134
    • /
    • 1999
  • Microstructure modification and electrochemical properties are investigate to estimate the effects of internal chlorides on the steel corrosion in the blended cement systems. According to the test results, slag cement system showed high chloride binding capacity and low corrosion rate. The impedance data showed three distince arcs from lowest(mHz) frequency to highest (MHz) frequency due to product layer, interfacial reaction and bulk matrix. Through the microstructural investigation, fine steel-matrix interface of slag cement system was observed but rough steel-matrix interface of OPC system was observed. Friedel's salt was thought that the substantial material contributed to the chloride binding of slag cement system.

  • PDF

Electrochemistry Characterization of Metal Using Corrosion Inhibitors Containing Amide Functional Group (아미드 작용기를 가진 부식억제제를 사용한 금속의 전기화학적 특성)

  • Park, Keun-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.28 no.1
    • /
    • pp.48-56
    • /
    • 2011
  • In this study, we investigated the C-V diagrams and metal surface related to the electrochemistry characterization of metal(nickel, SUS-304). We determined electrochemical measurement by using cyclic voltammetry with a three-electrode system. A measuring range was reduced from initial potential to -1350mV, continuously oxidized to 1650 mV and measured to the initial point. The scan rate were 50, 100, 150, 200 and 250 mV/s. As a result, the C-V characterization of metal using N,N-dimethylacetamide and N,N-dimethylformamide inhibitors appeared irreversible process caused by the oxidation current from the cyclic voltammogram. After adding organic corrosion inhibitors, adsorption film constituted, and the passive phenomena happened. According to the results by cyclic voltammetry method, it was revealed that the addition of inhibitors containing amide functional group enhances the corrosion resistance properties.

Effect of Ultrasound During Pretreatment on the Electrochemical Etching of Aluminum and Its Capacitance (초음파를 이용한 전처리가 알루미늄의 전기화학적 에칭 및 정전용량에 미치는 효과)

  • Jung, Insoo;Tak, Yongsug;Park, Kangyong;Kim, Hyungi;Kim, Sungsoo
    • Corrosion Science and Technology
    • /
    • v.10 no.1
    • /
    • pp.37-42
    • /
    • 2011
  • Aluminum was electrochemically etched in acid solution and the surface area was magnified by the formation of etch pits. Etched aluminum was covered with a compact and dense dielectric oxide film by anodization and applied to the aluminum electrolytic capacitor electrode. Capacitance of aluminum electrolytic capacitor is closely related with surface area, which depends on size and number of etch pits. Size of etch pits need to be controlled because inside of the pits can be buried by the formation of dielectric oxide film. In this work, the effect of ultrasound pretreatment on the aluminum etch pit formation and capacitance were investigated. Additionally, the relationship between the second etching effect on pit size and capacitance was studied.

Effect of Pretreatments on Graphene Coated Bipolar Plate of PEMFC on Electrochemical (전처리가 그래핀을 코팅한 고체고분자 연료전지 분리판의 전기화학적 특성에 미치는 영향)

  • Cha, Seong-Yun;Lee, Jae-Bong
    • Corrosion Science and Technology
    • /
    • v.13 no.6
    • /
    • pp.224-232
    • /
    • 2014
  • Effect of pretreatments on the graphene coated bipolar plate of proton exchange membrane fuel cell(PEMFC) was investigated in simulated environments for PEMFC by using electrochemical measurement techniques. Interfacial contact resistance(ICR) between the graphene coated bipolar plate and the gas diffusion layer(GDL) was measured. The value of ICR decreased with an increase in compaction stress($20N/cm^2{\sim}220N/cm^2$). ICR of graphene coated bipolar plate was higher than that of bare 316L stainless steel. However, Potentiodynamic measurement results showed that the corrosion resistance of graphene coated bipolar plate was higher than that of bare 316L stainless steel. $H_2SO_4$ acid pretreatment was the most effective among various pretreatments. The lowest ICR and the corrosion current density were obtained when using $H_2SO_4$ solution pretreatment.

An Electrochemical Evaluation of the Corrosion Property on the Welded Zone of Sea Water Pipe by each Welding Materials (용접 재료 별 해수 배관 용접부위의 부식 특성에 관한 전기화학적 평가)

  • Kim, Jin-Gyeong;Won, Chang-Uk;Moon, Kyung-Man
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.185-188
    • /
    • 2006
  • The sea water pipe of engine room in all kinds of ships is being surrounded with severe corrosive environment. Therefore it's leakage part due to corrosion is inevitably prevented by various welding method. In this case corrosion property of welded zone may be considerably different by each welding materials. In this study corrosion resistance of the welded zone of sea water pipe with some welding materials such as shielded metal arc welding materials, inert gas arc welding materials was investigated with electrochemical method.

  • PDF

Evaluation of Electrochemical Characteristics on Graphene Coated Austenitic and Martensitic Stainless Steels for Metallic Bipolar Plates in PEMFC Fabricated with Hydrazine Reduction Methods (하이드라진으로 환원시킨 그래핀을 코팅한 오스테나이트와 마르텐사이트 스테인리스 강 고체고분자형 연료전지 금속 분리판의 전기화학적 특성 평가)

  • Cha, Seong-Yun;Lee, Jae-Bong
    • Corrosion Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.92-107
    • /
    • 2016
  • Graphene was coated on austenitic and martensitic stainless steels to simulate the metallic bipolar plate of proton exchange membrane fuel cell (PEMFC). Graphene oxide (GO) was synthesized and was reduced to reduced graphene oxide (rGO) via a hydrazine process. rGO was confirmed by FE-SEM, Raman spectroscopy and XPS. Interfacial contact resistance (ICR) between the bipolar plate and the gas diffusion layer (GDL) was measured to confirm the electrical conductivity. Both ICR and corrosion current density decreased on graphene coated stainless steels. Corrosion resistance was also improved with immersion time in cathodic environments and satisfied the criteria of the Department of Energy (DOE), USA. The total concentrations of metal ions dissolved from graphene coated stainless steels were reduced. Furthermore hydrophobicity was improved by increasing the contact angle.

An Electrochemical Evaluation on the Corrosion of Weld Zone in Cold Arc Welding Process of the Cast Iron (주철의 냉간 아크용접시 용접부의 부식에 관한 전기화학적 평가)

  • Kim, Jin-Gyeong;Mun, Gyeong-Man
    • Proceedings of the KWS Conference
    • /
    • 2005.06a
    • /
    • pp.273-275
    • /
    • 2005
  • Variation of hardness and corrosion potential of welding zone was investigated when cold arc welding of cast iron was carried out with a parameter of Ni electrode. Hardness of HAZ was the highest compared to other welding zone. And corrosion potential of HAZ was also more negative value than other welding zone. However there was not a proportional relation between hardness and corrosion potential. Local corrosion of HAZ was clearly appeared than other welding zone by small anode and large cathode in seal water solution.

  • PDF

Electrochemical Coating of Amino Silane and Phosphoric Acid Coating on Electro Zinc Plating Steel (아연도금 표면의 아미노실란-인산 피막의 전기화학적 거동)

  • Kim, Yu-Sang;U, Ji-Hun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.168-168
    • /
    • 2016
  • 최근 크로메이트 피막의 대체로서 실란 커플링제를 사용한 화성처리가 주목되고 있다. 실란 커플링제는 $R^{\prime}-(CH_2)_n-Si(OR)_3$로 나타내며 OR은 가수분해 가능한 메톡시기, 에톡시기 등의 알콕시기이다. OR기는 가수분해하여 반응성이 높은 시라놀기(-SiOH)를 생성하여 금속표면에 흡착하기 쉽다. 이후, 건조할 때 탈수 축합하여 공유결합이 가능하다. R'는 탄화수소에 한정되지 않고 성질이 다른 원소의 관능기를 나타내며 아미노(amino)기, 글리시딜(glycidyl)기, 멜캅토(melcapto)기, 비닐(vinyl)기를 들 수 있다. 실란 커플링제 가운데 아미노기를 갖는 실란 커플링제는 아연도금 강판을 포함한 다양한 금속의 내식성을 향상시킬 수 있는 화합물의 하나이다. 본 연구에서는 아미노기를 함유한 실란 커플링제에 인산 수용액을 도포하여 수세하지 않고 건조하여 피막을 형성시켰다. 또 부식거동 조사를 목적으로 아미노기를 함유한 실란 커플링제를 사용하여 초산첨가의 경우와 비교하였다.

  • PDF

The Electrochemical Study of the Concrete Reinforcement Corrosion (콘크리트내부의 철근부식에 관한 전기화학적연구)

  • 강태혁;조원일;신치범;김은겸;주재백;윤경석
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.10a
    • /
    • pp.213-217
    • /
    • 1996
  • The electrochemical methods of early detection and analysis of corrosion related deterioration in concrete reinforcement structures are very useful techniques. The generally using procedure for corrosion monitoring of reinforced structures employs a method of half-cell potential measurement. Whilst the technique has provided a useful means of delineating areas of high or low corrosion risk, there are difficulties in its use and interpretation, particularly when assessing corrosion rates of reinforcement. The aim of this study is to describe the AC-impedance method being employed to monitor and assess corrosion rates, to estimate corrosion mechanism of reinfrocement in laboratory conditions. The AC-impedance monitoring technique applies a small amplitude(20mV) AC signal to embedded steel in concrete and reference electrode (Cu/$CuSo_4$). We obtained over a wide frequency range(10MHz~1mHz) to produce a complex plane plot or Nyquist plot.

  • PDF