• Title/Summary/Keyword: 전기 자동차 충전 표준

Search Result 16, Processing Time 0.025 seconds

Standard Strategies for Convergence Industries: A Case of Clash between Electric Vehicle Charging Standards and Smart Grid Communication Standards (미래 융합산업 표준 전략: 전기 자동차 충전 표준과 스마트그리드 통신 표준 충돌 사례)

  • Huh, Joon;Lee, Heejin
    • Journal of Technology Innovation
    • /
    • v.23 no.3
    • /
    • pp.137-167
    • /
    • 2015
  • Based on the stakeholder theory, this paper analyzes a clash of standards in Korea's Electric Vehicle(EV) market, particularly between an EV charging standard and a smart grid communication standard in 2012~2013. For charging, EV is connected with the electric power grid and simultaneously exchanges data regarding the charging status. When EV is connected with the power grid, a clash between two standards may arise. It actually happened when BMW entered into the Korean EV market with the DC Combo charging system. In that course, the frequency interference occurred between the EV data communication technology adopted by BMW and the AMI(Advanced Metering Infrastructure) for the smart grid system in Korea. Standardization of Korea's EV charging systems was required to solve this problem. However, it had been delayed due to the confrontation between various stakeholders involved in the process of standardization. It lasted until the DC combo was accepted as one of the Korea EV charging standards(KSAE SAE 1772-2040, 2014.1) by KSAE(The Korea Society of Automotive Engineers) in January 2014. This is an interesting case in the age of convergence. As it deals with the standard competition not among EV standards, but a clash between the EV industry and the smart grid, i.e. electric power industry, it addresses the necessity to consider standardization processes between different industries. This study draws on the stakeholder theory to analyse the dynamics of the standard clash between EV charging systems and the smart grid system, which is a unique example of standard clash between different industries. We expect such clashes to increase in the age of convergence.

Study on Standard for Ensured Safety of Electric Vehicle Charger (전기자동차 충전전원 공급설비의 안전성 확보를 위한 기준 연구)

  • Lee, Ki-Yeon;Kim, Hyang-Kon;Gil, Hyung-Jun;Kim, Dong-Ook
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.2148-2149
    • /
    • 2011
  • 환경오염에 대한 규제가 강화됨에 따라 친환경자동차의 개발과 보급이 활발하게 이루어지고 있기 때문에 전기에너지를 구동에너지로 사용하는 전기자동차의 보급을 위한 필수 요소인 전기자동차 충전 설비의 보급이 지속적으로 증가하고 있고 있지만, 전기자동차 충전설비의 안전성 확보를 위한 제도가 확립되어 있지 않은 상태에서 시범 보급되고 있는 현실이다. 따라서, 본 연구에서는 국내외 전기자동차 및 전기자동차 충전전원 공급설비관련 기준 및 표준 분석을 통하여 현재 전기설비기술기준 및 판단기준에 명시된 내용 분석을 통하여 전기자동차 충전전원 공급설비에 대한 안전성 확보를 위한 충전기, 충전케이블, 커플러 등의 시설기준에 대하여 나타내었다. 본 연구결과에 대한 활용에 따른 전기자동차 충전설비의 안전성 확보로 전 세계적인 기후변화 대응과 우리나라의 저탄소 녹색성장정책에 대응하기 위한 스마트그리드 산업의 활성화에 기여하고자 한다.

  • PDF

Charging System Software Framework Development for Korean PEV (한국형 전기자동차 충전시스템 소프트웨어 프레임워크 개발)

  • Sung, Tae-Jin;Kwon, Bong-Yong;Hong, Choon-Seon;Lee, Sung-Won;Lee, Jae-Jo
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06d
    • /
    • pp.410-412
    • /
    • 2012
  • 현재 자동차 산업에서 전기자동차의 실용화가 가속화되고 있다. 아울러, 전기자동차의 보급이 증가로 인해, 전기자동차 충전인프라에 대한 폭발적인 시장의 확대가 예상됨에 따라 향후 시장에서의 국제 경쟁력을 갖추고 국내 실정에 최적화된 한국형 전기자동차 충전시스템 소프트웨어 프레임워크의 개발이 필요하다. 이를 위해 본 논문에서는 전기자동차 관련 국제 표준인 SAE와 SEP를 분석하고, 이를 국내 실정에 맞도록 보완하여 한국형 전기자동차 충전 시스템에 대한 요구사항, SW구조의 설계 및 한국형 전기자동차 시나리오를 제안한다.

A Technology Trend and Analysis of Electric Vehicle Wireless Charging System (전기 자동차 무선 충전 시스템 기술 동향 및 분석)

  • Lim, Jong-Gyun;Lee, Dong-Yong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.2
    • /
    • pp.255-260
    • /
    • 2021
  • The importance of electric vehicles is gradually increasing due to the recent depletion of fossil fuels. In order to use an electric vehicle, the battery built into the vehicle must be frequently charged. Electric vehicles has very good performance in terms of noise and vibration. However, due to the limitations of the battery, the mileage is considerably shorter than that of an internal combustion engine vehicle once it is charged, and the battery charging time is relatively long compared to the refueling time. There are two types of charging methods for electric vehicle batteries: plug-in and wireless charging. In this paper, we introduced the wireless charging technology for electric vehicles and the current state of technology development and standards in major countries.

Study of N-Port Electric Vehicle Charging Systems Using OPC-UA (OPC UA를 이용한 N-Port EV 충전 시스템 연구)

  • Lee, Seong Joon
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.6 no.8
    • /
    • pp.343-352
    • /
    • 2017
  • IEC62541, known as OPC-UA, is a standard communication protocol for Smart Grid (SG) and Smart Factory application platform. It was accepted as an IEC standard (IEC62541) in 2011 by IEC TC57, and is extending range of application as collaborating with other standrads. The government's policies to popularize EVs ("Workplace Charging Challenge"), the number of Electric vehicle which try to be charging in the factory is expected to increase. In this situation, indiscreet and uncontrolled EV charging can lead to some problems, such as excess of the peak demand capacity. Therefore, EVs, which is charging in SFs, must be monitoring and controlling to avoid and reduce peak demand. However, the standards for EVs charging differ from the standards for SFs. In other words, to increase the ease of use for drivers, and reduce risk for enterprise, we have needs of study to develop the protocols or to provide interoperability, for EVs charging in SFs. This paper deals with a EV charging management platform installing in a smart factory. And this platform can be easily integrated as part of SF management software. The main goal of this paper is to implement EV management system based on IEC61851 and IEC62541.

Design and Application of Power Line Communication Module for V2G Conforming with International Standard for Electric Vehicle Charging Infrastructure (EV 충전인프라를 위한 국제표준에 부합하는 V2G용 전력선통신모듈 설계 및 응용)

  • Kim, Chul-Soo;Baek, Soo-Whang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.6
    • /
    • pp.1183-1190
    • /
    • 2018
  • The environmental regulations are being strengthened all over the world, and the introduction of electric vehicles are actively being considered to cope with them effectively. It is essential to establish a charging infrastructure, which is an essential element of electric vehicle distribution. In this paper, power line communication technology essential for smart charging infrastructure is studied. A control board capable of achieving a physical layer speed of 10Mbps and a TCP/IP layer of 4.5Mbps, which conforms to the ISO/IEC 15118 international standard, and a control board mounted on the board and compliant with international standards. We have developed a software solution to perform functions for linking. In addition, in order to be applied to the combo-type DC fast charger, the hardware was designed to meet the industrial environment standard and the V2G communication module was developed by integrating it with the software solution.

A Study on Portable Smart Tester for Fault Diagnosis of Electric Vehicle Charger (전기 자동차 충전기의 고장진단을 위한 휴대형 스마트 시험기에 관한 연구)

  • Kim, Chul-Soo;Baek, Soo-Whang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.1
    • /
    • pp.161-168
    • /
    • 2019
  • Recently, the development and dissemination of electric vehicles is increasing as a solution for carbon and emission reduction. In Korea, the supply of electric vehicles and the expansion of chargers are increasing rapidly every year under the supervision of the Ministry of Environment. In this paper, we study the portable smart test technology which enables quick check of charge related to faults in both electric car and charger to solve the problem of failure which is inevitable in the diffusion of electric car charger. To verify the normal operation of the communication protocol between the electric car and the charger, a hardware module and software were constructed, and a portable tester based on the international standard considering the V2G technology was developed and evaluated.