• 제목/요약/키워드: 전기 자동차 배터리

검색결과 352건 처리시간 0.026초

플러그인 하이브리드카(PHEV) 기술개발 동향 (Technology Development on Plug-in Hybrid Electric Vehicle)

  • 전황수
    • 전자통신동향분석
    • /
    • 제27권6호
    • /
    • pp.155-164
    • /
    • 2012
  • 플러그인 하이브리드카(Plug-in Hybrid Electric Vehicle: PHEV)는 가정이나 건물의 전기를 이용하여 외부에서 충전한 배터리의 전기동력으로 주행하다가 배터리 방전 시 일반 하이브리드카처럼 내연기관 엔진과 배터리의 전기동력을 동시에 사용하여 운행하는 자동차이다. 자동차 업체들은 전기자동차 보급에 가장 큰 걸림돌인 높은 배터리 가격이 낮아진다고 해도 짧은 주행거리 문제가 해결되지 않기 때문에, 대안으로 전원을 직접 연결해 배터리를 충전할 수 있는 플러그인 하이브리드카 개발에 주력하고 있다.

  • PDF

셀간 전압 편차를 활용한 전기자동차 배터리 잔존용량 분석 기법 (Electric vehicle battery remaining capacity analysis method using cell-to-cell voltage deviation)

  • 조갑성;고대식
    • Journal of Platform Technology
    • /
    • 제11권2호
    • /
    • pp.54-65
    • /
    • 2023
  • 전기자동차에 사용되는 배터리는 전기자동차의 특성상 정격용량이 매우 커다란 배터리이다. 전기자동차를 장기간 운행하거나 교통사고로 전기자동차가 폐차되게 되면 전기자동차용 배터리는 폐배터리가 된다. 폐차되는 차량이더라도 전기자동차용 폐배터리에 남아 있는 용량은 다른 용도로 사용하기에 충분하다. 자동차용 폐배터리는 매우 고가이기때문에 재활용 및 재사용이 필요하지만 재활용 및 재사용을 위한 폐배터리 성능등급 측정기준이 부족한 문제가 있었다. 폐배터리의 잔존용량을 측정하는 방법으로 가장 안정적이고 신뢰할 수 있는 방법은 완전 충·방전을 이용하여 배터리의 잔존용량을 측정하는 것이다. 하지만 이러한 완전 충·방전에 방식에 의한 검사 방법은 배터리의 용량에 따라 다르지만 검사하는데 하루 이상이 걸리는 단점을 가지고 있으며 많은 사람들이 이러한 문제를 해결하기 위하여 많은 노력을 하고 있다. 본 논문에서는 전기자동차 배터리에 대한 검사 시간을 줄일 수 있는 방법으로 셀간 전압 편차를 활용한 전기자동차 배터리 잔존용량 분석 기법을 연구 분석하였다. 이를 위하여 완전 충·방전 기반의 용량 측정시스템을 구성하고 코나 폐배터리를 이용하여 실험데이터를 수집하였고 배터리 팩을 구성하고 있는 배터리 셀간 전압 편차와 잔존용량과의 상관관계를 분석하여 배터리 검사에 활용할 수 있는지를 검증하였다.

  • PDF

전기자동차 급속 충전 시 배터리 팩 온도 모사를 위한 열 모델링 기법 (Thermal Modeling of Battery Pack for Electric Vehicles for Temperature Estimation during Fast Charging)

  • 김동환;강승현;배정현;노태원;이병국
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2020년도 전력전자학술대회
    • /
    • pp.49-51
    • /
    • 2020
  • 본 논문에서는 전기자동차 급속 충전 시 배터리 팩의 온도 모사를 위한 열 모델링 기법을 제안한다. 배터리 등가 회로 모델을 기반으로 배터리 팩 내부 발열량을 계산하고, 배터리 열 모델 구성을 위한 파라미터 추출 실험 방안을 제안하다. 또한, 전기자동차 방열 시스템의 영향 등으로 인한 발열량 변화를 실시간으로 보정하여 온도 모사 정확도를 개선한다. 열 모델링 기법의 유효성 검증을 위하여 전기자동차용 배터리 팩 기반의 시뮬레이션 및 실험을 진행한다.

  • PDF

전기자동차 배터리를 활용한 공장의 에너지 관리 방안 제안 (Proposal of a Factory Energy Management Method Using Electric Vehicle Batteries)

  • 박남기;이석주;고병수;딘민차우;이준엽;박민원
    • 한국산업정보학회논문지
    • /
    • 제29권3호
    • /
    • pp.67-77
    • /
    • 2024
  • 공장의 에너지 효율을 높이는 방안 중 공정 스케줄링은 제조 공정에서 자원을 최적으로 할당하여 제품의 생산 계획을 수립하는 활동이다. 그러나 야간 근로가 불가피한 경우에는 이러한 전략이 효과적으로 적용되지 않을 수 있다. 또한, 생산 요구량의 지속적인 변화로 인해 실제 공장에서의 적용에 어려움이 있다. 최근에는 전기자동차의 보급이 급증함에 따라 전기자동차 배터리를 에너지 저장 시스템으로 활용하는 기술이 주목을 받고 있다. 이러한 배터리를 활용한 기술은 공장 에너지 관리를 위한 대안이 될 수 있다. 본 논문에서는 전기자동차 배터리를 활용한 공장 에너지 관리 방안을 제안한다. 제안된 방안은 전기자동차 배터리 충전 상태 및 TOU(Time-of-use)를 고려하여 PSCAD/EMTDC 소프트웨어에서 분석된다. 제안된 방안은 예측된 전력 사용량과 TOU를 고려하여 수립된 공정 스케줄링과 비교 분석된다. 결과적으로 공정 스케줄링은 하루에 4,152원, 제안된 방안은 7,286원의 전기 요금을 절감하였다. 본 논문을 통해 공장 에너지 관리를 위해 전기자동차 배터리 활용 가능성을 확인할 수 있었다.

배터리전기자동차의 기술동향 및 특허출원동향 (Technologies and Patent Applications for Battery Electric Vehicle)

  • 조만;이창환
    • 에너지공학
    • /
    • 제21권1호
    • /
    • pp.86-108
    • /
    • 2012
  • 자동차산업이 해결해야 과제로서 $CO_2$배출에 의한 지구온난화, 배기가스배출에 의한 도시부 대기오염 그리고 석유자원고갈 등에 대한 대처 등이 있다. 이들의 현실적인 해법으로 시장에서 높은 평가를 받고 있는 것이 배터리전기자동차이다. 배터리전기자동차의 핵심 기술은 모터, 배터리, 전력제어, 전기적 제동 기술 등이다. 본 연구에서는 전기자동차에 대한 각국 정부의 주요 정책현황, 메이저 자동차 메이커의 판매전략, 핵심 요소기술의 개발동향 및 기술분석, 그리고 이들 기술들에 대한 세계특허출원동향을 조사분석하였다.

주요국의 전기자동차 정책 및 시사점 (Electric Vehicle Policy of Major Nations)

  • 전황수
    • 전자통신동향분석
    • /
    • 제27권3호
    • /
    • pp.186-195
    • /
    • 2012
  • 전기자동차는 석유 연료와 엔진을 사용하지 않고, 전기 배터리와 전기모터를 사용하는 자동차이다. 그동안 전기자동차는 가솔린 자동차보다 오랜 역사를 갖고 있었으나 배터리 중량, 충전 시간 등의 문제로 인해 실용화되지 못했다. 그러나 최근 들어 경제성과 친환경성을 만족시키면서 GM, 르노 등을 중심으로 전기자동차가 시판되고 있고, 국내에서도 활발히 개발되고 있다. 본고에서는 미국, 일본, 유럽, 중국과 국내의 전기자동차 관련 정책을 살펴보고 정책적 시사점을 도출하고자 한다.

  • PDF

전기자동차 배터리 추적 시스템을 위한 RFID 코드체계 설계에 관한 연구 (A Study on RFID Code Structure for Traceability System of Electric Vehicle Batteries)

  • 김우람;장윤석
    • 한국ITS학회 논문지
    • /
    • 제12권4호
    • /
    • pp.95-104
    • /
    • 2013
  • 지구 온난화, 화석연료의 고갈 등이 중요한 문제로 대두됨에 따라 전기자동차가 관심을 얻고 있다. 그러나 배터리 충전 시간, 높은 배터리 제조비용 등은 전기자동차가 널리 보급되는데 장애요인이 되고 있다. 이런 기술적 문제점을 해결하기 위한 대안으로 배터리를 교체하여 운행하는 운영 방식이 개발되었다. 배터리 교체형 시스템에서는 배터리의 공급망이 복잡하기 때문에 배터리의 신뢰성 확보 및 관리의 효율화를 위해서는 배터리 이력추적 시스템의 구축도 함께 진행되어야 한다. 본 연구에서는 전기자동차 배터리 이력추적 시스템에서 배터리 식별을 위해 사용될 RFID 코드를 설계하였다. 설계된 코드는 EPCglobal의 GRAI-96 표준을 기반으로 하였으며 배터리의 외형적 특성, 화학적 특성, 제조사, 제조일 등을 반영하였다. 설계된 코드는 RFID 코드뿐만 아니라 각 배터리의 개체식별번호로도 적용이 가능하다.

전기버스를 위한 배터리 자동 교환-충전인프라 배치 최적화 모형개발 및 적용 사례 분석 (A case study on optimal location modeling of battery swapping & charging facility for the electric bus system)

  • 김승지;김원규;김병종;임현섭
    • 한국ITS학회 논문지
    • /
    • 제12권1호
    • /
    • pp.121-135
    • /
    • 2013
  • 전 세계적으로 지구온난화로 인한 환경문제가 심각한 위기로 인식되어지면서 세계 각국에서는 전 산업분야에 걸쳐 이산화탄소 배출을 줄이고자 노력하고 있다. 국내 에너지 부문 CO2 배출량의 약 20%를 차지하는 수송 분야의 이산화탄소 배출을 감소시키기 위해서는 전기자동차 보급 확산이 필수적이다. 최근 정부에서 전기자동차 보급 활성화를 위해 많은 노력을 기울이고 있으나 긴 충전시간과 배터리의 가격에 의한 비싼 차량가격, 짧고 불규칙한 운행거리와 부족한 충전 인프라 등으로 인하여 향후 전기자동차의 보급 확대는 매우 불투명한 상태이다. 이러한 단점을 해결하고 효과적으로 전기자동차를 보급할 수 있는 방법 중 하나가 바로 배터리 공용제 기반의 배터리 자동교환형 전기자동차 시스템이다. 이를 위해서는 배터리를 자동으로 교환해주는 시설인 배터리 교환소 (BSS: Battery Swapping Stations)가 필요하게 되는데, BSS는 배터리 교환을 통해 전기자동차가 긴 충전시간을 소모할 필요 없이 짧은 시간 내에 배터리를 충전하고 이동할 수 있도록 하는 시스템이다. 이러한 시스템을 대중교통, 특히 공공버스에 적용함으로써 보다 빠른 시간 안에 전기자동차를 보급, 확산시키는 것이 가능하다. 일반버스를 전기버스로 전환하여 버스 노선을 운영할 경우 전기버스가 중간에 멈추지 않도록 적절한 위치에 충전시설을 구축할 필요가 있다. 전기버스에 대한 충전시설은 버스 노선의 기 종점 및 기존 버스정류장에 추가로 설치하여 버스가 승객의 승 하차를 위해 정차할 때 신속하게 배터리를 교환할 수 있게 구축해야 한다. 본 연구에서는 전기버스를 위한 배터리 자동교환충전시설의 위치선정 문제를 Set Covering Problem에 적용하여 해결하였다. 배터리 충전 시 최대 주행거리를 영향권으로 설정하였으며 메타 휴리스틱 기법인 그리디 알고리즘을 활용하여 배터리 교환형 충전인프라 배치 최적화 모델을 개발하였고 현재 운영 중인 서울시의 버스노선을 대상으로 실제 충전시설의 위치를 선정하였다.

전력망 충전식 전기자동차의 영향 및 에너지비용 (Potential Impacts and Energy Cost of Grid-Connected Plug-in Electric Vehicles)

  • 이경호;한승호
    • 에너지공학
    • /
    • 제19권2호
    • /
    • pp.92-102
    • /
    • 2010
  • 플러그인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle, PHEV)는 하이브리드 전기자동차(Hybrid Electric Vehicle, HEV)의 일종으로, 배터리 용량을 HEV보다 더욱 증대시키고 배터리의 충전을 전력망으로부터 할 수 있도록 한 자동차이며, 순수 배터리 전기자동차(Plug-in Battery Electric Vehicle, PBEV)는 전력망으로부터 전기를 배터리에 충전하여 저장하고 배터리에 저장된 전기만을 이용하여 운전가능한 자동차이다. 최근에 PHEV와 PBEV에 대한 관심과 개발이 전세계적으로 급속하게 증가하고 있다. 그러므로 이들 전력망 충전식 전기자동차가 전력망의 전력수요에 미치는 영향을 검토하는 것이 중요하다. 본 논문에서는 이들 PHEV와 PBEV 자동차의 보급으로 전력망의 전력수요, 이산화탄소 배출량과 차량구매자의 관점에서 운전비용에 미치는 영향을 분석하였다. 2020년경에 차량보급이 10%정도로 이루어질 것을 가정하여 영향을 분석하였다.

하나의 인덕터를 가지는 연료 전지 전기 자동차를 위한 연료전지·배터리 전력 변환 시스템 (Power Conversion System with One Inductor for Fuel Cell Battery Electric Vehicle)

  • 이윤재;김재국
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2019년도 추계학술대회
    • /
    • pp.16-18
    • /
    • 2019
  • 본 논문에서는 연료 전지 전기 자동차에 맞는 새로운 전력 변환 시스템을 제안한다. 연료 전지 전기 자동차의 전력 변환 시스템은 배터리와 같이 구성하여 에너지 저장 불가능, 느린 응답 속도, 낮은 전력 밀도와 같은 연료 전지의 단점을 해결할 수 있다. 하지만 기존의 연료 전지 전기 자동차의 전력 변환 시스템은 두 개의 DC/DC 컨버터를 사용하여 연료 전지와 배터리를 함께 구성함으로써 두 개의 인덕터 개수로 인해 비용이 증가하고 전력 밀도가 낮다는 단점이 있다. 제안하는 전력 변환 시스템은 한 개의 인덕터, 추가적인 스위치와 다이오드를 사용하여 연료 전지와 배터리를 하나의 컨버터로 구성한다. 따라서 기존에 비해 인덕터 개수가 감소함으로써 경제적이고 높은 전력 밀도 달성할 수 있으며, 스위치의 on/off 동작에 따라 승, 강압 동작이 가능하기 때문에 더 많은 연료전지와 배터리의 전압 조건 상황에서 동작할 수 있다.

  • PDF