• Title/Summary/Keyword: 전기 자극

Search Result 887, Processing Time 0.025 seconds

Effect of Electrical Stimulation using ABR and ECochG Analysis based on Jastreboff Tinnitus Mocel (Jastreboff 이명 모델에서의 ABR과 ECochG 신호분석을 통한 전기자극의 효과)

  • 임재중;김경식;김남균;전병훈
    • Journal of Biomedical Engineering Research
    • /
    • v.20 no.4
    • /
    • pp.471-477
    • /
    • 1999
  • Many researches have been performed whether electrical stimulation could be used for diagnosis and treatment on the auditory system impairment. Unfortunately, there were no standard methods or theoretical background for choosing stimulus conditions because of the lack of understanding on the transmission of electrical stimulation through the auditory pathway. This research was conducted to observe the effect of electrical stimulation on the tinnitus-induced animals. Nine guniea pigs were used for the experment and divided into two groups, five animals for the experimental group(A) and four animals for the control group(B). Experimental conditions were divided into four steps, before tinnitus induction and 1, 6, 12 hours after tinnitus induction using salicylate based on the Jastreboff model. In each experimental condition, ABR and ECochG were obtained, and autocorrelation coefficients were calculated from normalized waveforms based on rms values. Sum of all the autocorrelation coefficients was extracted as a parameter to observe the changes between before and after the electrical stimulation. As a result, ABR parameter values were rapidly increased 6 hours after tinnitus induction, the gradually returned back to the initial state. On the other hand, when electrical stimulation was applied, parameter values did not change compared with the initial sate. Parameter values of ECochG showed that the effect of electrical stimulation appeared 12 hours after the tinnitus induction. It was concluded that an electrical stimulation to the tinnitus-induced model changes the correlation coefficients of ABR and ECochG waveforms.

  • PDF

Fundamental Characteristics of Isometric Muscle Force Potentiation induced by Surface Stimulation in FES (기능적 표면 전기자극에 의해 유발되는 등척성 근력강화현상의 기초적 특성)

  • 엄광문
    • Journal of Biomedical Engineering Research
    • /
    • v.22 no.2
    • /
    • pp.151-156
    • /
    • 2001
  • A computer model of the musculoskelotal system that provides accurate prediction of muscle force and body movement trom the stimulation input is desired for the effective control system design in FES. This paper aims to investigate the fundamental properties of the gradual muscle force potentiation that was not included in the previous muscle models, for future development of a model that provides vetter prediction of FES-induced muscle force and body movement. Specifically, hou the muscle length was investigated. The experimental results showed that both the force increment ratio and the time-to-peak during electrical stimulation decreased with stimulatino frequency. When the muscle potentiation state was saturated by preceding stimulation. the force did not increase any more during additive stimulation. Muscle length significantly affected the force potentiation in such a way that the force increment ratio decreased with muscle length. A new model of the muscle potentiation based on these results is desired in the future.

  • PDF

Effect of Reserpine on Pancreatic Exocrine Secretion Induced by Mesencephalic Reticular Stimulation in Rats (흰쥐에서 Reserpine이 중뇌망상체의 자극으로 유발된 췌장의 외분비 기능에 미치는 영향)

  • Park, Hyoung-Jin;Lee, Yun-Lyul
    • The Korean Journal of Physiology
    • /
    • v.22 no.1
    • /
    • pp.101-109
    • /
    • 1988
  • 최근에 마취한 흰쥐에서 중뇌망상체를 전기적으로 자극하면 췌장의 외분비 기능이 증가하며 이러한 결과는 망상체의 자극으로 인하여 교감신경계의 활성도가 상승하기 때문이라는 보고가 있다. 한편 교감신경계의 활성도가 상승할 경우 교감신경계의 전달 물질인 catecholamine이 교감신경 종말 뿐만 아니라 부신수질에서도 유리된다고 알려져 있다. 그러므로 본 연구에서는 중뇌망상체의 자극으로 인하여 췌장의 외분비 기능이 증가함에 있어 교감신경계가 중요한 역할을 담당하는지를 확인하고, 이때 부신수질이 관여하는가를 알아보고자 하였다. 마취한 흰쥐에게 atropine (1mg/kg) 또는 reserpine (5mg/kg)을 투여하거나 또는 부신을 적출한 다음 중뇌망상체를 전기 자극하면서 췌장액을 채취하였다. 사용한 전기자극의 매개변수는 1.3V, 40Hz, 2msec이었다. atropine과 reserpine을 투여하면 마취한 흰쥐의 자발적 췌장액 분비량과 단백질 분비량은 모두 유의하게 감소하였으나 부신을 제거하면 췌장액 분비량에는 이렇다할 변동이 없는 반면에 단백질 분비량은 유의하게 감소하였다. 중뇌망상체를 전기자극하면 췌장액 분비량과 단백질 분비량 모두가 유의하게 증가하였다. 이러한 망상체의 자극효과는 atropine 전처치에 의하여 이렇다할 영향을 받지 않았으나 reserpine 전처치에 의하여 소실되었다. 그러나 부신을 적출하면 망상체 자극에 의한 췌장액 분비량의 증가는 유지되는 반면에 단백질 분비량의 증가는 소실되었다. 한편 미주신경을 절단한 흰쥐에서 중뇌망상체를 자극하는 동안에 경동맥의 수축기 및 이완기 혈압이 상승하였는데 이러한 망상체의 자극효과도 reserpine의 투여에 의하여 유의하게 감소되었다. 본 실험의 결과를 종합하여 보면 마취한 흰쥐에서 중뇌망상체의 자극은 교감신경계를 활성화시켜 췌장액 분비량과 단백질 분비량에 촉진적인 영향을 미치며, 이때 활성화된 교감신경계는 부분적으로 부신을 경유하게 췌장의 단백질 분비에 촉진적인 영향을 미치는 것으로 생각된다.

  • PDF

The Effects of Electric Stimulation of Abdominal Region on the Body Composition and Blood Components in Obesity (복부의 전기자극이 비만자의 신체조성과 혈중지질에 미치는 효과)

  • Kim, Yong-Seong;Choi, Ah-Young;Cho, Sung-Hyoun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.6
    • /
    • pp.3991-3998
    • /
    • 2015
  • The purpose of this study was to determine the effects of electric stimulation of abdominal region on the body composition and blood components in obesity. Control group measured pre and post test, and Experimental group I didn't receive electric stimulation in same environment as experimental group II. Experimental group II received electric stimulation on abdominal region. The result, experimental group II showed significant difference in weight, SLM, FFM, waist circumference, WHR, BMI, T-G, HDL-C. And experimental group I showed significant difference in waist circumference, WHR, T-C, and control group didn't show significant difference any variables. Therefore, electric stimulation effects on body composition in obesity persons.

The Effects of Functional Electrical Stimulation on Hand Function of Children With Spastic Cerebral Palsy (기능적 전기자극이 경직성 뇌성마비 아동의 상지 기능에 미치는 영향)

  • Bang, Hyun-Soo;Kim, Dong-Hyun
    • The Journal of Korean Academy of Sensory Integration
    • /
    • v.14 no.2
    • /
    • pp.1-10
    • /
    • 2016
  • Objective: This study aims investigating the effects of functional electrical stimulation (FES) on hand function of children with spastic cerebral palsy. Methods: The participants of this study are 20 children with spastic cerebral palsy aged between 11 to 16 years old. All the subjects underwent 24 sessions of FES during 8 weeks. Each FES was 20 minutes per session, and 3 sessions of FES were provided in a week. Measurements used to assess hand function are Jebsen Hand Function Test, Modified Ashworth Scale and 3D Motion Analysis. After establishment of the baseline for each client by all the measurements, reevaluations were performed every 2 weeks using Jebsen Hand Function Test and the Modified Ashworth Scale. The 3D Motion Analysis was performed only before- and after the 8 weeks of FES treatment. Results: After the FES, there was significant decrease in completed time for the all 6 subtasks of Jebsen Hand Function Test were (p<.05) and also significant decrease in spasticity score of Modified Ashworth Scale as well (p<.05). 3D Motion Analysis showed that the hand tapping and the finger tapping has been significantly improved (p<.05), and the pronation-supination movement of lower arm has been significantly improved as well. Conclusion: Based on the results of this study, it is evidenced that functional electrical stimulation is effective treatment for hand function of children with cerebral palsy. For future research, it is recommended to examine various protocols of FES including impact of long-term application.

Design and Implementation of Transcutaneous Electrical Nerve Stimulation System for the Integration with Mobile Phone (휴대폰 내장을 위한 경피신경 자극치료기의 설계 및 구현)

  • Woo Sang-Hyo;Yoon Ki-Won;Lee Jyung-Hyun;Park Hee-Joon;Won Chul-Ho;Cho Jin-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.3
    • /
    • pp.360-368
    • /
    • 2006
  • Recently, performance of the mobile phone has increased dramatically. Due to this, it is possible to integrate various biotechnology. There are many ventures to integrate biotechnology with mobile phone, because of increasement interest of peoples well-being. The transcutaneous electrical nerve stimulation can Improve the circulation of blood and suppress a pain. To integrate the transcutaneous electrical nerve stimulation with mobile phone, it is necessity to make small, low power, and safe module. In this paper, the transcutaneous electrical nerve stimulation module is designed and implemented by small boost convertor. The value of tank capacitor, which is the total stimulus energy to human, can be chosen to insure safe condition. The confirm the of operation of designed module, a small micro-controller is used to make system and test the module. The implemented system is small and consumes a low enough power to be integrated with mobile phone.

  • PDF

Changes in Postural Sway according to the Method of Transcutaneous Electrical Nerve Stimulation (경피신경전기자극의 적용 방법에 따른 자세 동요의 변화)

  • Kim, Hee-Gon;Shin, Won-Seob
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.3
    • /
    • pp.1207-1212
    • /
    • 2013
  • The purpose of this study was to examine the effect of transcutaneous electrical nerve stimulation (TENS) according to frequency and intensity on postural sway distance and velocity. TENS was applied to posterior aspect of the dominant leg with postural sway during one leg stance. Twenty-four healthy participants were measured while standing on a force platform with 5 different stimulation dosages of no TENS, high frequency and high intensity, high frequency and low intensity, low frequency and high intensity, low frequency and low intensity applied in 30 seconds. The five different dosages were performed with vision in random order. The results indicated that TENS dosage in the high frequency and low intensity had a significant decrease in postural sway(p<.05). From these results, we concluded that TENS delivered a high frequency and low intensity enhanced the postural sway in healthy adults. We expect that the postural sway of patients with decreased balance will reduce by application of TENS.

The Analgesic Effects of Transcutaneous Electrical Nerve Stimulation and Interferential Currents on the Experimental Cold Pain Model : Frequency 50 Hz and 100 Hz (실험적 냉각 통증 모델에서 경피신경전기자극과 간섭파전류의 진통 효과 비교 : 주파수 50 Hz과 100 Hz)

  • Bae, Young-Hyeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.9
    • /
    • pp.4045-4052
    • /
    • 2012
  • The aim of this single blind intervation study was to compare the analgesic effects of transcutaneous electrical nerve stimulation (TENS) and interferential currents (IFC) on cold-induced pain in healthy volunteers. Sixteen subjects completed six cycles of the cold-induced pain test. During each cycle pain threshold was recorded as the time from immersion of the subject is hand in cold water to the first sensation of pain and pain intensity and unpleasantness ratings were recorded using visual analogue scales. Subjects were randomly allocated to receive each 50 Hz-TENS, 50 Hz-IFC, 100 Hz-TENS and 100 Hz-IFC. Statistical analysis showed that four interventions elevated the cold pain threshold significantly and the difference between interventions was not simply significant. But, no significant differences were identified in pain intensity and unpleasantness ratings. We conclude that there were no differences in the analgesic effects of the four interventions under the present experimental conditions. But, 50 Hz-IFC has been shown to be more comfortable than other interventions.

The Neurophysiological Approaches in Animal Experiments (신경생리학적(神經生理學的) 동물실험(動物實驗))

  • Cheon, Jin-Sook
    • Korean Journal of Biological Psychiatry
    • /
    • v.5 no.1
    • /
    • pp.3-16
    • /
    • 1998
  • The neurophysiological study has been widely used in search of the relationship between brain and behavior. The basic techniques for the animal experiments of this kind such as stereotaxic techniques, lesioning methods, the methods of electrical stimulation and recording, and confirmation of histological location were briefly reviewed. Nevertheless, the importance of complementary neurochemical, neuroanatomical and behavioral studies can not be neglected.

  • PDF

Activation of IL-1β, IGF-1 and IGF-2 in Injured Rat Skeletal Muscle by Low Power He-Ne IR Laser and Electrical Stimulation (저출력레이저와 전기자극에 의한 골격근 손상 흰쥐의 IL-1β, IGF-1, IGF-2 활성)

  • Kim, Jong-Soon;Rho, Min-Hee
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.11
    • /
    • pp.251-262
    • /
    • 2008
  • In this study we investigated the effects of physical therapeutic intervention through electromyography, ultrasonographic imaging and changes of the IL-$1{\beta}$, IGF-1 and IGF-2 in skeletal muscle of rats injured experimentally. The twenty Sprague-Dawley male rats were randomly divided into the 4 groups: a normal, a control, a low power laser and a neuromuscular electrical stimulation group. Abnormal spontaneous activities had not been shown, both in normal and skeletal muscle injured rats. The maximum diameter of the calf muscle was significantly increased in the low power laser and neuromuscular electrical stimulation groups compared with control group. The level of the serum IL-$1{\beta}$ was more decreased in the low power laser and neuromuscular electrical stimulation groups than that of control group. The activation level of the IGF-1 and the IGF-2 were significantly higher in the control, low power laser and neuromuscular electrical stimulation groups than that of normal group. However, there was no statistically significant difference among the control, low power laser and neuromuscular electrical stimulation groups.