DOI QR코드

DOI QR Code

Activation of IL-1β, IGF-1 and IGF-2 in Injured Rat Skeletal Muscle by Low Power He-Ne IR Laser and Electrical Stimulation

저출력레이저와 전기자극에 의한 골격근 손상 흰쥐의 IL-1β, IGF-1, IGF-2 활성

  • 김종순 (부산가톨릭대학교 보건과학대학 물리치료학과) ;
  • 노민희 (부산가톨릭대학교 보건과학대학 물리치료학과)
  • Published : 2008.11.28

Abstract

In this study we investigated the effects of physical therapeutic intervention through electromyography, ultrasonographic imaging and changes of the IL-$1{\beta}$, IGF-1 and IGF-2 in skeletal muscle of rats injured experimentally. The twenty Sprague-Dawley male rats were randomly divided into the 4 groups: a normal, a control, a low power laser and a neuromuscular electrical stimulation group. Abnormal spontaneous activities had not been shown, both in normal and skeletal muscle injured rats. The maximum diameter of the calf muscle was significantly increased in the low power laser and neuromuscular electrical stimulation groups compared with control group. The level of the serum IL-$1{\beta}$ was more decreased in the low power laser and neuromuscular electrical stimulation groups than that of control group. The activation level of the IGF-1 and the IGF-2 were significantly higher in the control, low power laser and neuromuscular electrical stimulation groups than that of normal group. However, there was no statistically significant difference among the control, low power laser and neuromuscular electrical stimulation groups.

본 연구는 골격근 손상에 대한 물리치료 중재의 치료 효과를 근전도, 초음파 영상 그리고 IL-$1{\beta}$, IGF-1, IGF-2의 변화를 통해 알아보았다. 본 연구를 위해 실험동물을 정상군, 대조군, 레이저치료군, 신경근전기 자극군으로 무작위 배치하였다. 연구의 결과 근전도상 모든 실험동물에서 비정상적인 자발전위는 관찰되 지 않았으며 근육의 최대 횡단 직경은 대조군에 비해 레이저치료군과 신경근전기자극군이 유의하게 증가 하였다. IL-$1{\beta}$의 수준은 대조군에 비해 레이저치료군과 신경근전기자극군에서 보다 많이 감소하였으며 IGF-1과 IGF-2는 대조군, 레이저치료군 그리고 신경근전기자극군 모두 정상군에 비해 유의하게 높았으 나 대조군과 레이저치료군 그리고 신경근전기자극군 사이에 유의한 차이는 없었다.

Keywords

References

  1. J. D. Schertzer, S. M. Gehrig, J. G. Ryall, and G. S. Lynch, "Modulation of insulin-like growth factor(IGF)-I and IGF-binding protein interactions enhances skeletal muscle regeneration and ameliorates the dystrophic pathology in mdx mice," Am J Pathol, Vol.171, No.4, pp.1180-1188, 2007. https://doi.org/10.2353/ajpath.2007.070292
  2. D. A. Canapp, "Select modalities," Clini Tech Small Anim Pract, Vol.22, No.4, pp.160-165, 2007. https://doi.org/10.1053/j.ctsap.2007.09.004
  3. S. R. Moore and J. Shurman, "Combined neuromuscular electrical stimulation and transcutaneous electrical nerve stimulation for treatment of chronic back pain: A double-blind, repeated measures comparison," Arch Phys Med Rehabil, Vol.78, No.1, pp.55-60, 1997. https://doi.org/10.1016/S0003-9993(97)90010-1
  4. D. A. Lake, "Neuromuscular electrical stimulation. An overview and its application in the treatment of sports injuries," Sports Med, Vol.13, No.5, pp.320-336, 1992. https://doi.org/10.2165/00007256-199213050-00003
  5. J. A. Neder, D. Sword, S. A. Ward, E. Mackay, L. M. Cochrane, and C. J. Clark, "Home based neuromuscular electrical stimulation as a new rehabilitative strategy for severely disabled patients with chronic obstructive pulmonary disease (COPD)," Thorax, Vol.57, No.4, pp.333-337, 2002. https://doi.org/10.1136/thorax.57.4.333
  6. D. C. Carvalho de Abreu, A. C. Júnior, J. M. Rondina, and F. Cendes, "Muscle hypertrophy in quadriplegics with combined electrical stimulation and body weight support training," Int J Rehabil Res. Vol.31, No.2, pp.171-175, 2008. https://doi.org/10.1097/MRR.0b013e3282fc0fa4
  7. J. N. Gibson, K. Smith, and M. J. Rennie, "Prevention of disuse muscle atrophy by means of electrical stimulation: Maintenance of protein synthesis," Lancet, Vol.2, No.8614, pp.767-770, 1988.
  8. R. E. Kaplan, J. J. Czyrny, T. S. Fung, J. D. Unsworth, and J. Hirsh, "Electrical foot stimulation and implications for the prevention of venous thromboembolic disease," Thromb Haemost, Vol.88, No.2, pp.200-204, 2002. https://doi.org/10.1055/s-0037-1613187
  9. M. J. Conlan, J. W. Rapley, and C. M. Cobb, "Biostimulation of wound healing by low-energy laser irradiation. A review," J Clin Periodontol, Vol.23, No.5, pp.492-496, 1996. https://doi.org/10.1111/j.1600-051X.1996.tb00580.x
  10. T. Karu, "Primary and secondary mechanisms of action of visible to near-IR radiation on cells," J Photochem Photobiol B. Vol.49, No.1, pp.1-17, 1999. https://doi.org/10.1016/S1011-1344(98)00219-X
  11. A. C. Amaral, N. A. Parizotto, and T. F. Salvini, "Dose-dependency of low-energy HeNe laser effect in regeneration of skeletal muscle in mice," Lasers Med Sci, Vol.16, No.1, pp.44-51, 2001. https://doi.org/10.1007/PL00011336
  12. S. Tumilty, J. Munn, J. H. Abbott, S. McDonough, D. A. Hurley, and G. D. Baxter, "Laser therapy in the treatment of achilles tendinopathy: A pilot study," Photomed Laser Surg, Vol.26, No.1, pp.25-30, 2008. https://doi.org/10.1089/pho.2007.2126
  13. S. Rochkind, V. Drory, M. Alon, M. Nissan, and G. E. Ouaknine, "Laser phototherapy (780 nm), a new modality in treatment of long-term incomplete peripheral nerve injury: A randomized double-blind placebo-controlled study," Photomed Laser Surg, Vol.25, No.5, pp.436-442, 2007. https://doi.org/10.1089/pho.2007.2093
  14. L. J. Walsh, "The current status of low level laser therapy in dentistry. Part 2. Hard tissue applications," Aust Dent J, Vol.42, No.5, pp.302-306, 1997. https://doi.org/10.1111/j.1834-7819.1997.tb00134.x
  15. N. Ben-Dov, G. Shefer, A. Irintchev A, A. Wernig, U. Oron, and O. Halevy, "Low-energy laser irradiation affects satellite cell proliferation and differentiation in vitro," Biochim Biophys Acta, Vol.1448, No.3, pp.372-380, 1999. https://doi.org/10.1016/S0167-4889(98)00147-5
  16. I. Stadler, R. J. Lanzafame, R. Evans, V. Narayan, B. Dailey, N. Buehner, and J. O. Naim, "830-nm irradiation increases the wound tensile strength in a diabetic murine model," Lasers Surg Med. Vol.28, No.3, pp.220-226, 2001. https://doi.org/10.1002/lsm.1042
  17. K. Küllmer, K. W. Sievers, J. D. Rompe, M. Nägele, and U. Harland, "Sonography and MRI of experimental muscle injuries," Arch Orthop Trauma Surg, Vol.116, No.6-7, pp.357-361, 1997. https://doi.org/10.1007/BF00433990
  18. W. E. Paul and R. A. Seder, "Lymphocyte responses and cytokines," Cell, Vol.76, No.2, pp.241-251, 1994. https://doi.org/10.1016/0092-8674(94)90332-8
  19. K. Nagaraju, N. Raben, G. Merritt, L. Loeffler, K. Kirk, and P. Plotz, "A variety of cytokines and immunologically relevant surface molecules are expressed by normal human skeletal muscle cells under proinflammatory stimuli," Clin Exp Immunol, Vol.113, No.3, pp.407-414, 1998. https://doi.org/10.1046/j.1365-2249.1998.00664.x
  20. W. P. Arend, "The balance between IL-1 and IL-1Ra in disease," Cytokine Growth Factor Rev. Vol.13, No.4-5, pp.323-340, 2002. https://doi.org/10.1016/S1359-6101(02)00020-5
  21. D. S. Tews and H. H. Goebel, "Cytokine expression profile in idiopathic inflammatory myopathies," J Neuropathol Exp Neurol, Vol.55, No.3, pp.342-347, 1996. https://doi.org/10.1097/00005072-199603000-00009
  22. I. Lundberg, A. K. Ulfgren, P. Nyberg, U. Andersson, and L. Klareskog, "Cytokine production in muscle tissue of patients with idiopathic inflammatory myopathies," Arthritis Rheum, Vol.40, No.5, pp.865-874, 1997. https://doi.org/10.1002/art.1780400514
  23. H. Koshima, S. Kondo, S. Mishima, H. R. Choi, H. Shimpo, T. Sakai, and N. Ishiguro, "Expression of interleukin-1beta, cyclooxygenase-2, and prostaglandin E2 in a rotator cuff tear in rabbits," J Orthop Res, Vol.25, No.1, pp.92-97, 2007. https://doi.org/10.1002/jor.20241
  24. J. R. Florini, D. Z. Ewton, and S. A. Coolican, "Growth hormone and the insulin-like growth factor system in myogenesis," Endocr Rev, Vol.17, No.5, pp.481-517, 1996.
  25. A. Musarò, K. McCullagh, A. Paul, L. Houghton, G. Dobrowolny, M. Molinaro, E. R. Barton, H. L. Sweeney, and N. Rosenthal, "Localized Igf-1 transgene expression sustains hypertrophy and regeneration in senescent skeletal muscle," Nat Genet, Vol.27, No.2, pp.195-200, 2001. https://doi.org/10.1038/84839
  26. S. M. Rosenthal and Z. Q. Cheng, "Opposing early and late effects of insulin-like growth factor I on differentiation and the cell cycle regulatory retinoblastoma protein in skeletal myoblasts," Proc Natl Acad Sci USA, Vol.92, No.22, pp.10307-10311, 1995. https://doi.org/10.1073/pnas.92.22.10307
  27. R. Ambalavanar, C. Yallampalli, U. Yallampalli, and D. Dessem, "Injection of adjuvant but not acidic saline into craniofacial muscle evokes nociceptive behaviors and neuropeptide expression," Neuroscience, Vol.149, No.3, pp.650-659, 2007. https://doi.org/10.1016/j.neuroscience.2007.07.058
  28. W. Puehler, C. Zöllner, A. Brack, M. A. Shaqura, H. Krause, M. Schäfer, and C. Stein, "Rapid upregulation of mu opioid receptor mRNA in dorsal root ganglia in response to peripheral inflammation depends on neuronal conduction," Neuroscience. Vol.129, No.2, pp.473-479, 2004. https://doi.org/10.1016/j.neuroscience.2004.06.086
  29. N. V. Buliakova and V. S. Azarova, "Structure peculiarities of muscle regenerates and state of thymus under He-Ne laser therapy in different periods after muscle trauma," Izv Akad Nauk Ser Biol, Vol.6, pp.667-679, 2006.
  30. N. V. Bulyakova and V. S. Azarova, "Regeneration of skeletal muscles and state of thymus in gamma-irradiated rats under laser therapy of the area of muscle trauma," Minim Invasive Ther Allied Technol, Vol.15, No.5, pp.277-285, 2006. https://doi.org/10.1080/13645700600803950
  31. 채윤원, 근육통에 의한 이차성 통각과민에 대한 TENS와 냉의 효과, 대구대학교대학원 박사학위논문, 2002.
  32. F. Weber and U. Albert, "Electrodiagnostic examination of lumbosacral radiculopathies," Electromyogr Clin Neurophysiol, Vol.40, No.4, pp.231-236, 2000.
  33. C. Z. Hong and D. G. Simons, "Pathophysiologic and electrophysiologic mechanisms of myofascial trigger points," Arch Phys Med Rehabil, Vol.79, No.7, pp.863-872, 1998. https://doi.org/10.1016/S0003-9993(98)90371-9
  34. J. Lewis and P. Tehan, "A blinded pilot study investigating the use of diagnostic ultrasound for detecting active myofascial trigger points," Pain, Vol.79, No.1, pp.39-44, 1999. https://doi.org/10.1016/S0304-3959(98)00155-9
  35. R. D. Gerwin and D. Duranleau, "Ultrasound identification of the myofacial trigger point," Muscle Nerve, Vol.20, No.6, pp.767-768, 1997.
  36. J. Kert and L. Rose, Clinical laser therapy: low level laser therapy, Scandinavian Medical Laser Technology, 1989.
  37. A. C. Amaral, N. A. Parizotto, and T. F. Salvini, "Dose-dependency of low-energy HeNe laser effect in regeneration of skeletal muscle in mice," Lasers Med Sci, Vol.16, No.1, pp.44-51, 2001. https://doi.org/10.1007/PL00011336
  38. L. Qin, H. J. Appell, K. M. Chan, and N. Maffulli, "Electrical stimulation prevents immobilization atrophy in skeletal muscle of rabbits," Arch Phys Med Rehabil, Vol.78, No.5, pp.512-517, 1997. https://doi.org/10.1016/S0003-9993(97)90166-0
  39. F. Canon, F. Goubel, and C. Y. Guezennec, "Effects of chronic low frequency stimulation on contractile and elastic properties of hindlimb suspended rat soleus muscle," Eur J Appl Physiol Occup Physiol, Vol.77, No.1-2, pp.118-124, 1998.
  40. J. N. Gibson, K. Smith, and M. J. Rennie, "Prevention of disuse muscle atrophy by means of electrical stimulation: Maintenance of protein synthesis," Lancet, Vol.2, No.8614, pp.767-770, 1988.
  41. A. Bibikova and U. Oron, "Regeneration in denervated toad(Bufo viridis) gastrocnemius muscle and the promotion of the process by low energy laser irradiation," Anat Rec, Vol.241, No.1, pp.123-128, 1995. https://doi.org/10.1002/ar.1092410116
  42. F. R. Clemente, D. H. Matulionis, K. W. Barron, and D. P. Currier, "Effect of motor neuromuscular electrical stimulation on microvascular perfusion of stimulated rat skeletal muscle," Phys Ther, Vol.71, No.5, pp.397-404, 1991. https://doi.org/10.1093/ptj/71.5.397
  43. F. R. Clemente and K. W. Barron, "The influence of muscle contraction on the degree of microvascular perfusion in rat skeletal muscle following transcutaneous neuromuscular electrical stimulation," J Orthop Sports Phys Ther, Vol.18, No.3, pp.488-496, 1993. https://doi.org/10.2519/jospt.1993.18.3.488
  44. R. Bischoff, "Cell cycle commitment of rat muscle satellite cells," J Cell Biol, Vol.111, No.1, pp.201-207, 1990. https://doi.org/10.1083/jcb.111.1.201
  45. E. N. Olson, "Interplay between proliferation and differentiation within the myogenic lineage," Dev Biol, Vol.154, No.2, pp.261-272, 1992. https://doi.org/10.1016/0012-1606(92)90066-P
  46. P. Dias, M. Dilling, and P. Houghton, "The molecular basis of skeletal muscle differentiation," Semin Diagn Pathol, Vol.11, No.1, pp.3-14, 1994.
  47. V. R. Sara and K. Hall, "Insulin-like growth factors and their binding proteins," Physiol Rev, Vol.70, No3, pp.591-614, 1990.
  48. A. Brunetti, B. A. Maddux, K. Y. Wong, and I. D. Goldfine, "Muscle cell differentiation is associated with increased insulin receptor biosynthesis and messenger RNA levels," J Clin Invest, Vol.83, No.1, pp.192-198, 1989. https://doi.org/10.1172/JCI113858
  49. J. Isgaard, L. Carlsson, O. G. Isaksson, and J. O. Jansson, "Pulsatile intravenous growth hormone(GH) infusion to hypophysectomized rats increases insulin-like growth factor I messenger ribonucleic acid in skeletal tissues more effectively than continuous GH infusion," Endocrinology, Vol.123, No.6, pp.2605-2610, 1988. https://doi.org/10.1210/endo-123-6-2605
  50. J. R. Florini, K. A. Magri, D. Z. Ewton, P. L. James, K. Grindstaff, and P. S. Rotwein, "Spontaneous differentiation of skeletal myoblasts is dependent upon autocrine secretion of insulin-like growth factor-II," J Biol Chem, Vol.266, No.24, pp.15917-15923, 1991.
  51. L. Li, J. Zhou, G. James, R. Heller-Harrison, M. P. Czech, and E. N. Olson, "FGF inactivates myogenic helix-loop-helix proteins through phosphorylation of a conserved protein kinase C site in their DNA-binding domains," Cell, Vol.71, No.7, pp.1181-1194, 1992. https://doi.org/10.1016/S0092-8674(05)80066-2
  52. B. B. Olwin and S. D. Hauschka, "Cell surface fibroblast growth factor and epidermal growth factor receptors are permanently lost during skeletal muscle terminal differentiation in culture," J Cell Biol, Vol.107, No.2, pp.761-769, 1988. https://doi.org/10.1083/jcb.107.2.761