• Title/Summary/Keyword: 전기 유동유체

Search Result 150, Processing Time 0.026 seconds

Experimental Study on Flow Characteristics of ERF by using PIV Technique (PIV 기법을 이용한 ER 유체의 유동특성에 관한 실험적 연구)

  • 장태현
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.1
    • /
    • pp.116-123
    • /
    • 2004
  • An experimental investigation was performed to study the characteristics of ER (Electro-Rheological) fluid flow in a horizontal rectangular tube with or without D.C volatage. To determine some characteristics of the ER flow. 2D PIV(Particle Image Velocimetry) technique is employed for velocity measurement. This research found the mean velocity distribution with 0 kV/mm. 1.0kV/mm and 1 5kV/mm for Re=0, 0.62, 1.29 and 2.26. When the strength of the electric field increased. the claster of ERF are clearly strong along the test tube and the flow rate decreased.

Force Feedback Control of 3 DOF Haptic Device Utilizing Electrorheological Fluid (ER 유체를 이용한 3 자유도 햅틱 장치의 힘 반향 제어)

  • Han, Y.M.;Kang, P.S.;Choi, S.B.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.213-216
    • /
    • 2005
  • This paper presents force feedback control performance of a 3DOF haptic device that can be used for minimally invasive surgery (MIS). As a first step, a 3DOF electrorheological (ER) joint is designed using a spherical mechanism. And it is optimized based on the mathematical torque modeling. Subsequently, the master haptic device is manufactured by the spherical joint. In order to achieve desired force trajectories, model based compensation strategy is adopted for the ER master. Therefore, Preisach model fur the PMA-based ER fluid is identified using experimental first order descending (FOD) curves. A compensation strategy is then formulated through the model inversion to achieve desired force at the ER master. Tracking control performances for sinusoidal force trajectory are presented, and their tracking errors are evaluated.

  • PDF

Position Control of a Moving Table Using ER Brake and ER Clutch (ER 브레이크와 클러치를 이용한 이송 테이블의 위치 제어)

  • 김승래;최승복;정재천
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.225-229
    • /
    • 1996
  • This paper presents an active position control of a moving table utilizing ER(electro-rheological) brake and ER clutch. A transformer oil-based ER fluid is composed and its Bingham properties are evaluated with respect to electric fields. The dynamics of the actuators : ER brake and ER clutch, are identified through experiments, and subsequently the governing equation of motion of the moving table system is formulated from the governing equation, a sliding mode controller is designed to achieve an accurate position control. Both simulation and experimental results and presented in order to demonstrate the effectiveness of the proposed control methodology.

  • PDF

Dynamic Characteristics of ER Mounts with different operation modes (작동모드에 따른 ER마운트의 동특성 해석)

  • 홍성룡;최승복;정우진;함일배;김두기
    • Journal of KSNVE
    • /
    • v.10 no.5
    • /
    • pp.819-829
    • /
    • 2000
  • Dynamic Characteristics of two different types of ER(electro-rheological)mounts ; flow and shear mode types are analyzed and compared. As a first step, field-dependent Bingham models of a chemically treated starch/silicone oil-based ER fluid are empirically identified under both flow and shear mode conditions. The models are them incorporated to the governing equation of the corresponding mode ER mount. For the reasonable comparison between two ER mounts, electrode parameters such as electrode gap are designed to be same. Dynamic stiffness and displacement transmissibility of each ER mount are evaluated in frequency domain with respect to the intensity of electric filed. In addition, vibration control capability of each ER mount is investigated in both frequency and time domains by employing the skyhook controller.

  • PDF

Electrorheological Properties of ER Fluid under High Shear Flow (고속 전단유동에서 ER유체의 전기유변 특성)

  • Kim Y. C.;Kim K. W.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.229-234
    • /
    • 2003
  • As electrorheological fluid(ER fluid) has a characteristic that apparent viscosity varies when electric field applied, so rheological characteristic(yield stress & viscosity) changes in proportion to the electric field applied and the response time is very short within a few miliseconds . In case of using ER fluid for journal bearing as lubricant, it is estimated that it's possible to realize very effective journal bearing system that is not complicate and has a very quick response time. It is necessary to examine the influence of rheological characteristic that varies with electric field applied on bearing characteristic to apply ER fluid to journal bearing, however there are few studies for about that. As for the journal bearing, it comes under high shear flow mode that has shear rate range of $10^3\~10^4s^{-1}$ because rotational speed is very high and clearance is small. But most of the studies for about ER fluid issued until now is about the range of $10\~10^2s^{-1}$. So, there are a lot of difficulties to understand the characteristic offish shear flow mode and furthermore it is restricted to make an experiment for about the characteristic of ER fluid because of the limitation of experimental equipment. The equipment was prepared to make an experiment lot high shear flow mode that has the range of $10^3\~10^4s^{-1}$ using ER fluid that is composed of silicon oil with dispersed particle of starch. Using the above system, the fluid characteristic of ER fluid was studied.

  • PDF

Numerical Analysis and Experimental Investigation of Duct Flows of an MHD Propulsion System (사각형의 MHD 추진 덕트 내부유동에 관한 수치해석 및 실험적 연구)

  • J.W. Lee;S.J. Lee;C.M. Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.32 no.1
    • /
    • pp.83-93
    • /
    • 1995
  • A numerical and experimental investigation on the flow characteristics in the rectangular duct of an MHD propulsion system has been carried out. In numerical analysis, three-dimensional, steady-state, viscous, incompressible electrically conducting fluid flow under the influence of uniformly applied magnetic and electric fields was treated using a finite-difference technique. It was found from the numerical study that when the Lorentz force is weak, the typical parabolic velocity profile under a laminar flow condition changes to an M shaped profile near the electrode region and that the pressure increases linearly from the inlet toward the outlet of the MHD duct under constant electro-magnetic field. In experiment, thrust of the MHD propulsion system can be controlled easily by varying electrode current. The measured pressure gradient along the MHD duct is proportional to the Lorentz force, which is in agreement with the numerical results.

  • PDF

Electrokinetically Flow-Induced Streaming Potential Across the Charged Membrane Micropores: for the Case of Nonlinear Poisson-Boltzmann Electric Field (하전된 멤브레인 미세기공에서의 계면동전기적 유동에 의한 흐름전위: 비선형 Poisson-Boltzmann 전기장을 갖는 경우)

  • Myung-Suk Chun
    • Membrane Journal
    • /
    • v.13 no.1
    • /
    • pp.37-46
    • /
    • 2003
  • The electrokinetic effect can be found in cases of the fluid flowing across the charged membrane micropores. The externally applied body force originated from the electrostatic interaction between the nonlinear Poisson-Boltzmann field and the flow-induced electrical field is taken into the equation of motion. The electrostatic potential profile is computed a priori by applying the finite difference scheme, and an analytical solution to the Navier-Stokes equation of motion for slit-like pore is obtained via the Green's function. An explicit analytical expression for the flow-induced streaming potential is derived as functions of relevant physicochemical parameters. The influences of the electric double layer, the surface potential of the wall, and the charge condition of the pore wall upon the velocity profile as well as the streaming potential are examined. With increasing of either the electric double layer thickness or the surface potential, the average fluid velocity is entirely reduced, while the streaming potential increases.

Thermal Analysis of Power Apparatus Considering Resistance on Temperature Variation (온도변화에 따른 저항값을 고려한 전력기기의 열해석)

  • Kim, S.W.;Hahn, S.C.;Kim, J.K.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.767-769
    • /
    • 2002
  • 최근 초고압 전력기기에 대한 많은 연구가 활발히 진행되고 있음에도 불구하고 통전용량에 크게 영향을 미치는 열해석에 대한 연구가 많이 부족한 실정이다. 본 논문에서는 초고압전력기기인 GIS(Gas Insulated Switchgear)의 모선에 대한 열해석을 다루었다. 해석방법은 유한요소법을 이용하여 온도상승을 예측하였다. 유한요소법은 3각형 등의 임의의 형상을 요소로서 채용할 수 있으므로 3상 모선과 같이 복잡한 형상도 표현할 수 있다. 열전달계수는 형상, 유동조건, 유체의 종류를 고려한 상관식을 이용하여 해석적으로 정확히 계산하였다. 열해석에 있어 자계해석을 통한 도체 및 탱크의 손실값산정이 선행되어야 하는데, 이 손실값이 온도상승의 원인이 되므로 정확히 계산하여야 한다. 손실의 원인이 되는 도체 및 탱크의 저항은 온도가 상승함에 따라 비선형으로 변화하는데, 이것을 고려하여 반복적으로 계산함으로서 해석의 정확성을 높이고자 하였다. 실제 모델에 대한 온도상숭 실험치와 본 논문에서 제시한 방법으로 해석한 계산치와의 비교를 통해 타당성을 입증하였다.

  • PDF

Comparion of models and boundary conditions in fluid simulation of high density Inductively Coupled Plasma Sources included ion temperature equation (이온 온도 방정식이 포함된 고밀도 유도결합 플라즈마원 수송 시뮬레이션을 위한 모델 및 경계 조건 비교)

  • Kwon, Deuk-Chul;Yu, D.H.;Lee, J.K.;Yoon, N.S.;Kim, J.H.;Shin, Y.H.
    • Proceedings of the KIEE Conference
    • /
    • 2004.07c
    • /
    • pp.1924-1926
    • /
    • 2004
  • 여러 그룹의 연구 결과로서 고밀도 유도결합 플라즈마원 유체 수송 시뮬레이션을 위해 다양한 경계 조건을 포함한 여러 가지 모델이 제시되어 왔다. 본 연구에서는 가능한 모델들과 경계 조건을 설정하여 FDM(finite difference method), up wind scheme, power-law scheme, die1ectric relaxation scheme[1]을 기반으로한 1차원 시뮬레이션을 통해 정확성과 수치 해석적 안정성 및 효율성 연에서 비교, 검토하였다.

  • PDF

Position Control of ER Valve-Cylinder System Via Neural Control Technique (신경 제어 기법을 이용한 ER 밸브-실린더 시스템의 위치 제어)

  • 정재민;최승복;정재천
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.6
    • /
    • pp.52-64
    • /
    • 1996
  • This paper presents an active position control of a single-rod cylinder system featuring an electrorheological(ER) fluid-based valve. The ER fluid consisting of silicone oil and chemically treated particles is firstly composed and its Bingham property is tested as a function of imposed electric field. A multi-channel plate type of ER valve is then designed and manufactured on the basis of the field-dependent Bingham model. Performance test of the ER valve is undertaken by evaluating pressure drop with respect to the number of electrode as well as the intensity of the electric field. Subsequently, the ER valve-cylinder system is constructed and its governing equation of motion is derived. A neural control scheme for position control of the cylinder is formulated by incorporating proportional-plus-derivative(PD) controller and implemented. Experimental results of both regulating and tracking control responses are presented in order to demonstrate the efficacy of the proposed ER valve-cylinder control system.

  • PDF