• Title/Summary/Keyword: 전기 방전

Search Result 2,820, Processing Time 0.055 seconds

Analysis of Dry Process Products for Recycling of Spent Secondary Batteries (폐 이차전지 리사이클링을 위한 건식공정 생성물 분석)

  • Kim, Jinhan;Kim, Yongcheol;Oh, Seung Kyo;Jeon, Jong-Ki
    • Clean Technology
    • /
    • v.27 no.2
    • /
    • pp.139-145
    • /
    • 2021
  • The purpose of this study is to recover valuable metals from spent batteries using a dry process. We focused on the effect of the smelting temperature on the composition of recovered solid and liquid products and collected gaseous products. After removal of the cover, the spent battery was left in NaCl solution and discharged. Then, the spent battery was made into a powder form through a crushing process. The smelting of the spent battery was performed in a tubular electric furnace in an oxygen atmosphere. For spent lithium-ion batteries, the recovery yield of the solid product was 80.1 wt% at a reaction temperature of 850 ℃, and the final product had 27.2 wt% of cobalt as well as other metals such as lithium, copper, and aluminum. Spent nickel-hydrogen batteries had a recovery yield of 99.2 wt% at a reaction temperature of 850 ℃ with about 37.6 wt% of nickel and other metals including iron. For spent nickel-cadmium batteries, the yield decreased to 65.4 wt% because of evaporation with increasing temperature. At 1050 ℃, the recovered metals were nickel (41 wt%) and cadmium (12.9 wt%). Benzene and toluene, which were not detected with the other secondary waste batteries, were detected in the gaseous product. The results of this study can be used as basic data for future research on the dry recycling process of spent secondary batteries.

Enhanced Thermoelectric Properties in n-Type Bi2Te3 using Control of Grain Size (Grain 크기 조절을 통한 n-Type Bi2Te3 열전 소재 특성 향상)

  • Lee, Nayoung;Ye, Sungwook;Jamil Ur, Rahman;Tak, Jang-Yeul;Cho, Jung Young;Seo, Won Seon;Shin, Weon Ho;Nam, Woo Hyun;Roh, Jong Wook
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.4
    • /
    • pp.91-96
    • /
    • 2021
  • The enhancement of thermoelectric figure of merit was achieved by the simple processes of sieving and high energy ball milling, respectively, which are enable to reduce the grain size of n-type Bi2Te3 thermoelectric materials. By optimizing the grain size, the electrical conductivities and thermal conductivities were controlled. In this study, spark plasma sintering was employed for hindering the grain growth during the sintering process. The thermoelectric figure of merit was measured to be 0.78 in the samples with 30 min high energy ball milling process. Notably, this value was 40 % higher than that of pristine Bi2Te3 sample. This result shows the properties of thermoelectric materials can be readily controlled by optimization of grain size via simple ball milling process.

Analysis of Crushing/Classification Process for Recovery of Black Mass from Li-ion Battery and Mathematical Modeling of Mixed Materials (폐배터리 블랙 매스(black mass) 회수를 위한 파쇄/분급 공정 분석 및 2종 혼합물의 수학적 분쇄 모델링)

  • Kwanho Kim;Hoon Lee
    • Resources Recycling
    • /
    • v.31 no.6
    • /
    • pp.81-91
    • /
    • 2022
  • The use of lithium-ion batteries increases significantly with the rapid spread of electronic devices and electric vehicle and thereby an increase in the amount of waste batteries is expected in the near future. Therefore, studies are continuously being conducted to recover various resources of cathode active material (Ni, Co, Mn, Li) from waste battery. In order to recover the cathode active material, black mass is generally recovered from waste battery. The general process of recovering black mass is a waste battery collection - discharge - dismantling - crushing - classification process. This study focus on the crushing/classification process among the processes. Specifically, the particle size distribution of various samples at each crushing/classification step were evaluated, and the particle shape of each particle fraction was analyzed with a microscope and SEM (Scanning Electron Microscopy)-EDS(Energy Dispersive Spectrometer). As a result, among the black mass particle, fine particle less than 74 ㎛ was the mixture of cathode and anode active material which are properly liberated from the current metals. However, coarse particle larger than 100 ㎛ was present in a form in which the current metal and active material were combined. In addition, this study developed a PBM(Population Balance Model) system that can simulate two-species mixture sample with two different crushing properties. Using developed model, the breakage parameters of two species was derived and predictive performance of breakage distribution was verified.

The Efficacy Evaluation of Tourmaline-Ionized Water in Animal Study (투어마린이온활성수의 효능 평가)

  • Yoon, Yang-Suk;Kim, Dong-Heui;Qi, Xu-Feng;Song, Soon-Bong;Jung, Jong-Ho;Joo, Kyung-Bok;Teng, Yung-Chien;Lee, Kyu-Jae
    • Applied Microscopy
    • /
    • v.39 no.4
    • /
    • pp.311-317
    • /
    • 2009
  • This study was performed using animals to confirm the effect of tourmaline-ionized water (TIW) the properties of which were changed by tourmaline energy and electric discharge. In the ICR mice fed high-fat diet, body weight increasing rate of the TIW-treated group (Exp) was generally decreased and moreover exhibited significance at 11th week (P<0.05) compared with the control (Con) group fed distilled water, although water intake of the Exp group was lower than that of the Con group. In the ICR mice with $CCl_4$-induced hepatotoxicity, AST and ALT activities of the Exp group were not significant but showed some decreasing trend, and histological damage of liver was less compared with thatof the Con group. On the study of ethanol-induced hangovers in Sprague-Dawley rat, blood alcohol concentration was significantly decreased (P<0.01), activity of GST, antioxidant enzyme related to the alcohol metabolism, was increased in liver tissue (P<0.05), and AST and ALT show a tendency to be decreasedin the Exp group. These results suggest that drinking TIWhas not only some obesity preventing effect but also an alcohol detoxification effect and liver protecting effect in vivo. It is supposed due to a structural change of water cluster and a property which maintains the changed structure through tourmaline energy and electric discharge. Therefore, TIW has a potentiality to be developed as functional water with several beneficial effects as well as for daily drinking, but further study on the mechanism related with efficacy will be necessary.

Economic analysis of Frequency Regulation Battery Energy Storage System for Czech combined heat & power plant (체코 열병합발전소 주파수조정용 배터리에너지저장장치 경제성 분석)

  • KIM, YuTack;Cha, DongMin;Jung, SooAn;Son, SangHak
    • Journal of Energy Engineering
    • /
    • v.29 no.2
    • /
    • pp.68-78
    • /
    • 2020
  • According to the new climate change agreement, technology development to reduce greenhouse gases is actively conducted worldwide, and research on energy efficiency improvement in the field of power generation and transmission and distribution is underway [1,2]. Economic analysis of the operation method of storing and supplying surplus electricity using energy storage devices, and using energy storage devices as a frequency adjustment reserve power in regional cogeneration plants has been reported as the most profitable operation method [3-7]. Therefore, this study conducted an economic analysis for the installation of energy storage devices in the combined heat and power plant in the Czech Republic. The most important factor in evaluating the economics of battery energy storage devices is the lifespan, and the warranty life is generally 10 to 15 years, based on charging and discharging once a day. For the simulation, the ratio of battery and PCS was designed as 1: 1 and 1: 2. In general, the primary frequency control is designed as 1: 4, but considering the characteristics of the cogeneration plant, it is set at a ratio of up to 1: 2, and the capacity is simulated at 1MW to 10MW and 2MWh to 20MWh according to each ratio. Therefore, life was evaluated based on the number of cycles per year. In the case of installing a battery energy storage system in a combined heat and power plant in the Czech Republic, the payback period of 3MW / 3MWh is more favorable than 5MW / 5MWh, considering the local infrastructure and power market. It is estimated to be about 3 years or 5 years from the simple payback period considering the estimated purchase price without subsidies. If you lower the purchase price by 50%, the purchase cost is an important part of the cost for the entire lifetime, so the payback period is about half as short. It can be, but it is impossible to secure profitability through the economy at the scale of 3MWh and 5MWh. If the price of the electricity market falls by 50%, the payback period will be three years longer in P1 mode and two years longer in P2 and P3 modes.

Study on Ti-doped LiNi0.6Co0.2Mn0.2O2 Cathode Materials for High Stability Lithium Ion Batteries (고안정성 리튬이온전지 양극활물질용 Ti 치환형 LiNi0.6Co0.2Mn0.2O2 연구)

  • Jeon, Young Hee;Lim, Soo A
    • Journal of the Korean Electrochemical Society
    • /
    • v.24 no.4
    • /
    • pp.120-132
    • /
    • 2021
  • Although the development of high-Nickel is being actively carried out to solve the capacity limitation and the high price of raw cobalt due to the limitation of high voltage use of the existing LiCoO2, the deterioration of the battery characteristics due to the decrease in structural stability and increase of the Ni content. It is an important cause of delaying commercialization. Therefore, in order to increase the high stability of the Ni-rich ternary cathod material LiNi0.6Co0.2Mn0.2O2, precursor Ni0.6Co0.2Mn0.2-x(OH)2/xTiO2 was prepared using a nanosized TiO2 suspension type source for uniform Ti substitution in the precursor. It was mixed with Li2CO3, and after heating, the cathode active material LiNi0.6Co0.2Mn0.2-xTixO2 was synthesized, and the physical properties according to the Ti content were compared. Through FE-SEM and EDS mapping analysis, it was confirmed that a positive electrode active material having a uniform particle size was prepared through Ti-substituted spherical precursor and Particle Size Analyzer and internal density and strength were increased, XRD structure analysis and ICP-MS quantitative analysis confirmed that the capacity was effectively maintained even when the Ti-substituted positive electrode active material was manufactured and charging and discharging were continued at high temperature and high voltage.

Research of Heavily Selective Emitter Doping for Making Solar Cell by Using the New Atmospheric Plasma Jet (새로운 대기압 플라즈마 제트를 이용한 태양전지용 고농도 선택적 도핑에 관한 연구)

  • Cho, I Hyun;Yun, Myung Soo;Son, Chan Hee;Jo, Tae Hoon;Kim, Dong Hea;Seo, Il Won;Rho, Jun Hyoung;Jeon, Bu Il;Kim, In Tae;Choi, Eun Ha;Cho, Guangsup;Kwon, Gi Chung
    • Journal of the Korean Vacuum Society
    • /
    • v.22 no.5
    • /
    • pp.238-244
    • /
    • 2013
  • Doping process using laser is an important process in fabrication of solar cell for heat treatment. However, the process of using the furnace is difficult to form a selective emitter doping region. The case of using a selective emitter laser doping is required an expensive laser equipment and induce the wafer's structure damage due to high temperature. This study, we fabricated a new costly plasma source. Through this, we research the selective emitter doping. We fabricated that the atmospheric pressure plasma jet injected Ar gas is inputted a low frequency (a few tens kHz). We used shallow doping wafers existing PSG (Phosphorus Silicate Glass) on the shallow doping CZ P-type wafer. Atmospheric plasma treatment time was 15 s and 30 s, and current for making the plasma is 40 mA and 70 mA. We investigated a doping profile by using SIMS (Secondary Ion Mass Spectroscopy) and we grasp the sheet resistance of electrical character by using doping profile. As result of experiment, prolonged doping process time and highly plasma current occur a deeper doping depth, moreover improve sheet resistance. We grasped the wafer's surface damage after atmospheric pressure plasma doping by using SEM (Scanning Electron Microscopy). We check that wafer's surface is not changed after plasma doping and atmospheric pressure doping width is broaden by increase of plasma treatment time and current.

Electrical properties of metal-oxide-semiconductor structures containing Si nanocrystals fabricated by rapid thermal oxidation process (급속열처리산화법으로 형성시킨 $SiO_2$/나노결정 Si의 전기적 특성 연구)

  • Kim, Yong;Park, Kyung-Hwa;Jung, Tae-Hoon;Park, Hong-Jun;Lee, Jae-Yeol;Choi, Won-Chul;Kim, Eun-Kyu
    • Journal of the Korean Vacuum Society
    • /
    • v.10 no.1
    • /
    • pp.44-50
    • /
    • 2001
  • Metal oxide semiconductor (MOS) structures containing nanocrystals are fabricated by using rapid thermal oxidations of amorphous silicon films. The amorphous films are deposited either by electron beam deposition method or by electron beam deposition assisted by Ar ion beam during deposition. Post oxidation of e-beam deposited film results in relatively small hysteresis of capacitance-voltage (C-V) and the flat band voltage shift, $\DeltaV_{FB}$ is less than 1V indicative of the formation of low density nanocrystals in $SiO_2$ near $SiO_2$/Si interface. By contrast, we observe very large hysteresis in C-V characteristics for oxidized ion-beam assisted e-beam deposited sample. The flat band voltage shift is larger than 22V and the hysteresis becomes even broader as increasing injection times of holes at accumulation condition and electrons at inversion condition. The result indicates the formation of slow traps in $SiO_2$ near $SiO_2$/Si interface which might be related to large density nanocrystals. Roughly estimated trap density is $1{\times}10^{13}cm^{-2}$. Such a large hysteresis may be explained in terms of the activation of adatom migration by Ar ion during deposition. The activated migration may increase nucleation rate of Si nuclei in amorphous Si matrix. During post oxidation process, nuclei grow into nanocrystals. Therefore, ion beam assistance during deposition may be very feasible for MOS structure containing nanocrystals with large density which is a basic building block for single electron memory device.

  • PDF

Nanomechanical Properties of Lithiated Silicon Nanowires Probed with Atomic Force Microscopy (원자힘 현미경으로 측정된 리튬화 실리콘 나노선의 나노기계적 성질)

  • Lee, Hyun-Soo;Shin, Weon-Ho;Kwon, Sang-Ku;Choi, Jang-Wook;Park, Jeong-Young
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.6
    • /
    • pp.395-402
    • /
    • 2011
  • The nanomechanical properties of fully lithiated and unlithiated silicon nanowire deposited on silicon substrate have been studied with atomic force microscopy. Silicon nanowires were synthesized using the vapor-liquid-solid process on stainless steel substrates using Au catalyst. Fully lithiated silicon nanowires were obtained by using the electrochemical method, followed by drop-casting on the silicon substrate. The roughness, derived from a line profile of the surface measured in contact mode atomic force microscopy, has a smaller value ($0.65{\pm}0.05$ nm) for lithiated silicon nanowire and a higher value ($1.72{\pm}0.16$ nm) for unlithiated silicon nanowire. Force spectroscopy was utilitzed to study the influence of lithiation on the tip-surface adhesion force. Lithiated silicon nanowire revealed a smaller value (~15 nN) than that of the Si nanowire substrate (~60 nN) by a factor of two, while the adhesion force of the silicon nanowire is similar to that of the silicon substrate. The elastic local spring constants obtained from the force-distance curve, also shows that the unlithiated silicon nanowire has a relatively smaller value (16.98 N/m) than lithiated silicon nanowire (66.30 N/m) due to the elastically soft amorphous structures. The frictional forces of lithiated and unlithiated silicon nanowire were obtained within the range of 0.5-4.0 Hz and 0.01-200 nN for velocity and load dependency, respectively. We explain the trend of adhesion and modulus in light of the materials properties of silicon and lithiated silicon. The results suggest a useful method for chemical identification of the lithiated region during the charging and discharging process.

Analysis and Design of Profiling Adaptor for XML based Energy Storage System (XML 기반의 에너지 저장용 프로파일 어댑터 분석 및 설계)

  • Woo, Yongje;Park, Jaehong;Kang, Mingoo;Kwon, Kiwon
    • Journal of Internet Computing and Services
    • /
    • v.16 no.5
    • /
    • pp.29-38
    • /
    • 2015
  • The Energy Storage System stores electricity for later use. This system can store electricity from legacy electric power systems or renewable energy systems into a battery device when demand is low. When there is high electricity demand, it uses the electricity previously stored and enables efficient energy usage and stable operation of the electric power system. It increases the energy usage efficiency, stabilizes the power supply system, and increases the utilization of renewable energy. The recent increase in the global interest for efficient energy consumption has increased the need for an energy storage system that can satisfy both the consumers' demand for stable power supply and the suppliers' demand for power demand normalization. In general, an energy storage system consists of a Power Conditioning System, a Battery Management System, a battery cell and peripheral devices. The specifications of the subsystems that form the energy storage system are manufacturer dependent. Since the core component interfaces are not standardized, there are difficulties in forming and operating the energy storage system. In this paper, the design of the profile structure for energy storage system and realization of private profiling system for energy storage system is presented. The profiling system accommodates diverse component settings that are manufacturer dependent and information needed for effective operation. The settings and operation information of various PCSs, BMSs, battery cells, and other peripheral device are analyzed to define profile specification and structure. A profile adapter software that can be applied to energy storage system is designed and implemented. The profiles for energy storage system generated by the profile authoring tool consist of a settings profile and operation profile. Setting profile consists of configuration information for energy device what composes energy saving system. To be more specific, setting profile has three parts of category as information for electric control module, sub system, and interface for communication between electric devices. Operation profile includes information in relation to the method in which controls Energy Storage system. The profiles are based on standard XML specification to accommodate future extensions. The profile system has been verified by applying it to an energy storage system and testing charge and discharge operations.