• Title/Summary/Keyword: 전기저항 영상법

Search Result 56, Processing Time 0.024 seconds

Electrical Resistivity-Measurements for the Detection of Fracture Zones in the Woraksan Granitic-Bodies (월악산화강암체의 파쇄대규명을 위한 전기비저항탐사)

  • 김지수;권일룡
    • The Journal of Engineering Geology
    • /
    • v.7 no.2
    • /
    • pp.113-126
    • /
    • 1997
  • Electrical resistivity methods of dipole - dipole array profiling and Schiumberger array sounding were tested on a segment of the Woraksan granitic batholith for the research into the imaging of irregular attitudes of fracture zones in the crystaaline rock in terms of processing and interpretation schemes. By the dipole - dipole array method, inhomogeneities such as small scale of fracture zones were properly delineated down at some depth even within hard rock environment. Fracture zones were interpreted to be at the boundaries between the high amplitude zone and very low amplitude zone in the resistivity plot and they were also successfully outlined in two - dimensional layer and pseudo - three - dimensional volume constructed by the incorporation of vertical sounding data. The surface location of the fracture zones was correlated by the zero - crossing point in the VLF(very low frequency) electromagnetic data. Pseudo - three - dimensional attitudes of fracture zones were efficiently illuminated by optimum projection angle. The mean of bulk resistivity for the Woraksan granite and the near fracture zones is estimated to be approximately of 4,000 ohm - m which is much higher than the value of 700 ohm - m for the Rwachunri limesilicate environment. This difference is due to both the rock type, i.e., biotite granite vs limesilicate, and the occurrence of secondary openings of fold and fault associated with the intrusion of granite. In this study statistical analyses on the resistivity color plot were performed in terms of three representative statistical moments, i.e., standard deviation, skewness, and kurtosis. The fracture zones in the standard deviation plot were characterized by the higher value, compared to the value of homogeneous portion. The upper boundary of the high resistivity zone was also successfully delineated in the skewness and kurtosis plots.

  • PDF

IP Modeling and Inversion Using Complex Resistivity (복소 전기비저항을 이용한 IP 탐사 모델링 및 역산)

  • Son, Jeong-Sul;Kim, Junhg-Ho;Yi, Myeong-Jong
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.2
    • /
    • pp.138-146
    • /
    • 2007
  • This paper describes 2.5D induced polarization (IP) modeling and inversion algorithms using complex resistivity. The complex resistivity method has merits for acquiring more valuable information about hydraulic parameters and pore fluid than the conventional IP methods. The IP modeling and inversion algorithms are developed by allowing complex arithmetic in existing DC modeling and inversion algorithms. The IP modeling and inversion algorithms use a 2.5D DC finite-element algorithm and a damped least-squares method with smoothness constraints, respectively. The accuracy of the IP modeling algorithm is verified by comparing its responses of two synthetic models with two different approaches: linear filtering for a three-layer model and an integral equation method for a 3D model. Results from these methods are well matched to each other. The inversion algorithm is validated by a synthetic example which has two anomalous bodies, one is more conductive but non-polarizable than the background, and the other is polarizable but has the same resistivity as the background. From the inverted section, we can cleary identify each anomalous body with different locations. Furthermore, in order to verify its efficiency to the real filed example, we apply the inversion algorithm to another three-layer model which includes phase anomaly in the second layer.

Principles and application of DC resistivity tomography and borehole radar survey. (전기비저항 토모그래피와 시추공 레이다 탐사의 원리 및 응용)

  • Kim Jung-Ho;Yi Myeong-Jong;Cho Seong-Jun;Song Yoon-Ho;Chung Seung-Hwan
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 1999.08a
    • /
    • pp.92-116
    • /
    • 1999
  • Tomographic approaches to image underground structure using electrical properties, can be divided into DC resistivity, electromagnetic, and radar tomography, based on the operating frequency. DC resistivity and radar tomography methods have been recently applied to site investigation for engineering purpose in Korea. This paper review these two tomography methods, through the case histories acquired in Korea. As another method of borehole radar survey, borehole radar reflection method is included, and its inherent problem and solution are discussed, how to find the azimuth angle of reflector using direction-finding-antenna. Since the velocity anisotropy of radar wave has been commonly encountered in field data, anisotropic radar tomography is discussed in this paper. In DC resistivity tomography, two subjects are focussed, electrode arrays, and borehole effect owing to the conductive fluid in borehole. Using the numerical modeling data, various kinds of electrode ways are compared, and borehole effect is illustrated. Most of the case histories presented in this paper are compared with known geology, core logging data, and/or Televiewer images.

  • PDF

Three-dimensional Resistivity Inversion Including Topographic Effect (지형효과를 포함한 3차원 전기비저항 역산)

  • 박종오;김희준;송무영
    • The Journal of Engineering Geology
    • /
    • v.14 no.1
    • /
    • pp.21-28
    • /
    • 2004
  • Three-dimensional (3-D) resistivity inversion including a topographic effect can be considered theoretically to be the technique of acquiring the most accurate image in the interpretation of resistivity data, because it includes characteristic image that the actual subsurface structure is 3-D. In this study, a finite-element method was used as the numerical method in modeling, and the efficiency of Jacobian calculation has been maximized with sensitivity analysis for the destination block in inversion process. Also, during the iterative inversion, the resolution of inversion can be improved with the method of selecting the optimal value of Lagrange multiplier yielding minimum RMS(root mean square) error in the parabolic equation. In this paper, we present synthetic examples to compare the difference between the case which has the toprographic effect and the other case which has not the effect in the inversion process.

Delineation of a fault zone beneath a riverbed by an electrical resistivity survey using a floating streamer cable (스트리머 전기비저항 탐사에 의한 하저 단층 탐지)

  • Kwon Hyoung-Seok;Kim Jung-Ho;Ahn Hee-Yoon;Yoon Jin-Sung;Kim Ki-Seog;Jung Chi-Kwang;Lee Seung-Bok;Uchida Toshihiro
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.1
    • /
    • pp.50-58
    • /
    • 2005
  • Recently, the imaging of geological structures beneath water-covered areas has been in great demand because of numerous tunnel and bridge construction projects on river or lake sites. An electrical resistivity survey can be effective in such a situation because it provides a subsurface image of faults or weak zones beneath the water layer. Even though conventional resistivity surveys in water-covered areas, in which electrodes are installed on the water bottom, do give high-resolution subsurface images, much time and effort is required to install electrodes. Therefore, an easier and more convenient method is sought to find the strike direction of the main zones of weakness, especially for reconnaissance surveys. In this paper, we investigate the applicability of the streamer resistivity survey method, which uses electrodes in a streamer cable towed by ship or boat, for delineating a fault zone. We do this through numerical experiments with models of water-covered areas. We demonstrate that the fault zone can be imaged, not only by installing electrodes on the water bottom, but also by using floating electrodes, when the depth of water is less than twice the electrode spacing. In addition, we compare the signal-to-noise ratio and resolving power of four kinds of electrode arrays that can be adapted to the streamer resistivity method. Following this numerical study, we carried out both conventional and streamer resistivity surveys for the planned tunnel construction site located at the Han River in Seoul, Korea. To obtain high-resolution resistivity images we used the conventional method, and installed electrodes on the water bottom along the planned route of the tunnel beneath the river. Applying a two-dimensional inversion scheme to the measured data, we found three distinctive low-resistivity anomalies, which we interpreted as associated with fault zones. To determine the strike direction of these three fault zones, we used the quick and convenient streamer resistivity.

Joint Inversion of DC Resistivity and Travel Time Tomography Data: Preliminary Results (전기비저항 주시 토모그래피 탐사자료 복합역산 기초 연구)

  • Kim, Jung-Ho;Yi, Myeong-Jong;Cho, Chang-Soo;Suh, Jung-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.4
    • /
    • pp.314-321
    • /
    • 2007
  • Recently, multi-dimensional joint inversion of geophysical data based on fundamentally different physical properties is being actively studied. Joint inversion can provide a way to obtaining much more accurate image of the subsurface structure. Through the joint inversion, furthermore, it is possible to directly estimate non-geophysical material properties from geophysical measurements. In this study, we developed a new algorithm for jointly inverting dc resistivity and seismic traveltime data based on the multiple constraints: (1) structural similarity based on cross-gradient, (2) correlation between two different material properties, and (3) a priori information on the material property distribution. Through the numerical experiments of surface dc resistivity and seismic refraction surveys, the performance of the proposed algorithm was demonstrated and the effects of different regularizations were analyzed. In particular, we showed that the hidden layer problem in the seismic refraction method due to an inter-bedded low velocity layer can be solved by the joint inversion when appropriate constraints are applied.

Correlation interpretation for surface-geophysical exploration data-Chojeong Area, Chungbuk (지표물리탐사 자료의 상관해석-충북 초정지역)

  • Gwon, Il Ryong;Kim, Ji Su;Kim, Gyeong Ho
    • Journal of the Korean Geophysical Society
    • /
    • v.2 no.1
    • /
    • pp.75-88
    • /
    • 1999
  • A recent major subject of geophysical exploration is research into 3-D subsurface imaging with a composite information from the various geophysical data. In an attempt to interpret Schlumberger sounding data for the study area in 2-D and 3-D view, resistivity imaging was firstly performed and then pseudo-3-D resistivity volume was reconstructed by interpolating several 1-D resistivity plots. Electrical resistivity discontinuities such as fracture zone were successfully clarified in pseudo-3-D resistivity volume. The low resistivity zone mainly associated with fracture zone appears to develop down to granitic basement in the central part of the study area. Seismic velocity near the lineament is estimated to be approximately as small as 3,000 m/s, and weathering-layer for the southeastern part is interpreted to be deeper than for the northwestern part. Geophysical attributes such as electrical resistivity, seismic velocity, radioactivity for the Chojeong Area were analysed by utilizing a GIS software Arc/Info. The major fault boundaries and fracture zones were resolved through image enhancement of composite section (electrical resistivity and seismic refraction data) and were interpreted to develop in the southeastern part of the area, as characterized by low electrical resistivity and low seismic velocity. However, radioactivity attribute was found to be less sensitive to geological discontinuities, compared to resistivity and seismic velocity attributes.

  • PDF

Case Studies of Electrical Resistivity Imaging Technique in Civil & Environmental Engineering Areas (전기비저항 영상화 기법의 토목 및 환경분야 적용사례연구)

  • 정연문;김정호
    • Geotechnical Engineering
    • /
    • v.14 no.4
    • /
    • pp.91-102
    • /
    • 1998
  • Electrical resistivity method, one of the most widely used geophysical prospecting methods. has been usually applied to explorations for groundwater and underground resources. However, it has been extending its scope to civil & environmental engineering areas since it twas been developed so as to image underground structures effectively. A FEM algorithm for the dipole-dipole array was developed to correct topographic effects which have a serious influence on electrical methods. Applicability of the electrical resistivity imaging technique to civil & environmental engineering areas was verified through three case histories in this study First, thickness of soil layers was profiled to judge the possibility of developing borrow-pits tn an industrial complect site. Second, weak zones such as fractures and coal seams were detected to provide geological information for design and construction in a high mountain tunnel site. Third, horizontal/vertical distribution of the contaminated zone and depth of waste disposal were delineated in a completed industrial waste disposal site.

  • PDF

Detection of Groundwater Table Changes in Alluvium Using Electrical Resistivity Monitoring Method (전기비저항 모니터링 방법을 이용한 충적층 지하수위 변동 감지)

  • 김형수
    • The Journal of Engineering Geology
    • /
    • v.7 no.2
    • /
    • pp.139-149
    • /
    • 1997
  • Electrical resistivity monitoring methods were adopted to detect groundwater table change in alluvium. Numerical modelling test using finite element method(FEM) and field resisfivity monitoring were conducted in the study. The field monitoring data were acquired in the alluvium deposit site in Jeong-Dong Ri, Geum River where pumping test had been conducted continuously for 20 days to make artificial changes of groundwater table. The unit distance of the electrode array was 4m and 21 fixed electrodes were applied in numerical calculation and field data acquisition. "Modified Wenner" and dipole-dipole array configurations were used in the study. The models used in two-dimensional numerical test were designed on the basis of the simplifving geological model of the alluvium in Jeong Dong Ri, Geum River. Numerical test results show that the apparent resistivity pseudosections were changed in the vicinity of the pootion where groundwater table was changed. Furthermore, there are some apparent resistivity changes in the boundary between aquifer and crystalline basement rock which overlays the aquifer. The field monitoring data also give similar results which were observed in numerical tests. From the numerical test using FEM and field resistivity monitoring observations in alluvium site of Geum River, the electrical monitoring method is proved to be a useful tool for detecting groundwater behavior including groundwater table change. There are some limitations, however, in the application of the resistivity method only because the change of groundwater table does not give enough variations in the apparent resistivity pseudosections to estimate the amount of groundwater table change. For the improved detection of groundwater table changes, it is desirable to combine the resistivity method with other geophysical methods that reveal the underground image such as high-resolution seismic and/or ground penetrating radar surveys.

  • PDF

Resistivity Image Reconstruction Using Interacting Dual-Mode Regularization (상호작용 이중-모드 조정방법을 이용한 저항률 영상 복원)

  • Kang, Suk-In;Kim, Kyung-Youn
    • Journal of IKEEE
    • /
    • v.20 no.2
    • /
    • pp.152-162
    • /
    • 2016
  • Electrical resistivity tomography (ERT) is a technique to reconstruct the internal resistivity distribution using the measured voltages on the surface electrodes. ERT inverse problem suffers from ill-posedness nature, so regularization methods are used to mitigate ill-posedness. The reconstruction performance varies depending on the type of regularization method. In this paper, an interacting dual-mode regularization method is proposed with two different regularization methods, L1-norm regularization and total variation (TV) regularization, to achieve robust reconstruction performance. The interacting dual-mode regularization method selects the suitable regularization method and combines the regularization methods based on computed mode probabilities depending on the actual conditions. The proposed method is tested with numerical simulations and the results demonstrate an improved reconstruction performance.