• Title/Summary/Keyword: 전기임피던스

Search Result 1,218, Processing Time 0.026 seconds

Measurement of Channel Impedance Characteristics for Indoor Power Line Communications (옥내 전력선 통신 채널 임피던스 특성 측정)

  • Heo Yoon-Seok;Kim Chul;Hong Bong-Hwa;Lee Dae-Young;Jun Kye-Suk
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.11
    • /
    • pp.79-86
    • /
    • 2005
  • This paper describe a method for measuring line impedance as a function of frequency for an energized powerline in normal operation. A small sinusoidal signal of a powerline communication utility frequency $30khz\~1Mhz$ band is continuously injected into the line, and a implemented impedance analyzer calculates the indoor powerline channel impedance from the measured magnitude and phase of resulting voltage and current. The impedance measurement is executed over a range of frequencies to produce a wideband impedance versus frequency characteristic. Implemented impedance analyzer can analysis powerline communication environments measuring line impedance due to load caused in indoor. And measured analysis information through the database can use to evaluate performance of modem and to decide test environment standard.

A Study on the Electrical Difference for The Limbs and Thoracic Impedance using Real-Time Bio-impedance Measurement System (실시간 생체임피던스 측정 시스템을 이용한 사지와 흉부 임피던스에 대한 전기적인 차이 연구)

  • Cho, Young-Chang;Kim, Min-Soo;Yoon, Jeong-Oh
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.18 no.6
    • /
    • pp.9-16
    • /
    • 2013
  • Bio-impedance measurement system(BMS) is non-invasive and easy to implement a measurement method that allows determining the water content of a patient. The measurement conditions, the hardware specifications and the configurations of BMS devices must be well chosen in order to get correct and reproducible results. BMS was then conducted for the limbs and the thoracic using a lock-in amplifier and LabView control system with a frequency range of 1kHz-100kHz. From both the measurement data and the simulation results, we verified that the parameters in the proposed equivalent model and the trend of impedance variation according to the multi-frequency of applied current source are similar to those of human body. We believe that the real-time BMS developed in this study is highly reliable and applicable to the research on the clinical characteristics of the human being's impedance.

Study on the Railway Fault Locator Impedance Prediction Method using Field Synchronized Power Measured Data (실측 동기화 데이터를 활용한 교류전기철도의 고장점표정장치 임피던스 예측기법 연구)

  • Jeon, Yong-Joo;Kim, Jae-chul
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.5
    • /
    • pp.595-601
    • /
    • 2017
  • Due to the electrification of railways, fault at the traction line is increasing year by year. So importance of the fault locator is growing higher. Nevertheless at the field traction line, it is difficult to locate accurate fault point due to various conditions. In this paper railway feeding system current loop equation was simplified and generalized though measured data. And substation, train power data were measured under synchronized condition. Finally catenary impedance was predicted through generalized equation. Also simulation model was designed to figure out the effect of load current for train at same location. Train current was changed from min to max range and catenary impedance was compared at same location. Finally, power measurement was performed in the field at train and substation simultaneously and catenary system impedance was predicted and calculated. Through this method catenary impedance can be measured more easily and continuously compared to the past method.

Unequal Power Divider with Different Complex Termination Impedance (다른 복소 종단 임피던스를 갖는 비대칭 전력 분배기)

  • Kim, Young
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.1
    • /
    • pp.15-21
    • /
    • 2022
  • In this paper, we propose a method to implement an unequal power divider with different complex termination impedances for different output power ratios. The proposed method was designed using a matching the terminated complex impedances of the output port using only the transmission line, and presented an isolation circuits to satisfy the isolation characteristic between the terminating complex impedance ports. To prove the feasibility of this method, an unequal power divider with different load complex impedances with a splitting ratio k2 = 3 dB and 1.7 dB and an unequal power divider with different complex termination impedances of all ports with a splitting ratio k2 = 3 dB was designed at a center frequency of 2 GHz, and it was confirmed that the measured results of the electrical characteristics agree well the simulation.

CMOS Gigahertz Low Power Optical Preamplier Design (CMOS 저잡음 기가비트급 광전단 증폭기 설계)

  • Whang, Yong-Hee;Kang, Jin-Koo
    • Journal of IKEEE
    • /
    • v.7 no.1 s.12
    • /
    • pp.72-79
    • /
    • 2003
  • Classical designs of optical transimpedance preamplifier for p-i-n photodiode receiver circuits generally employ common source transimpedance input stages. In this paper, we explore the design of a class of current-mode optical transimpedance preamplifier based upon common gate input stages. A feature of current-mode optical transimpedance preamplifier is high gain and high bandwidth. The bandwidth of the transimpedance preamplifier can also be increased by the capacitive peaking technique. In this paper we included the development and application of a circuit analysis technique based on the minimum noise. We develop a general formulation of the technique, illustrate its use on a number of circuit examples, and apply it to the design and optimization of the low-noise transimpedance amplifier. Using the noise minimization method and the capacitive peaking technique we designed a transimpedance preamplifier with low noise, high-speed current-mode transimpedance preamplifier with a 1.57GHz bandwidth, and a 2.34K transimpedance gain, a 470nA input noise current. The proposed preamplifier consumes 16.84mW from a 3.3V power supply.

  • PDF

Conditioning Effects on LSM-YSZ Cathodes for Thin-film SOFCs

  • Lee You-Kee;Visco Steven J.
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.4
    • /
    • pp.202-208
    • /
    • 1999
  • Composite cathodes of $50/50\;vol\%$ LSM-YSZ $(La_{-x}Sr_xMnO_3-yttria\;stabilized\;zirconia)$ were deposited onto dense YSZ electrolytes by colloidal deposition technique. The cathode characteristics were then examined by scanning electron microscopy (SEM) and studied by ac-impedance spectroscopy (IS). The conditioning effects on LSM-YSZ cathodes were seen and remedies for these effects were noted in order to improve the performance of a solid oxide fuel cell (SOFC). The effects of temperature on impedance, surface contamination on cathode bonding to YSZ electrolyte, changing Pt paste, aerosol spray technique applied to curved surface on microstructure and cell to cell variability were solved by testing at $900^{\circ}C$, sanding the YSZ surface, using only one batch of Pt paste, using flat YSZ plates and using consistent procedures and techniques, respectively. And then, reproducible impedance spectra were confirmed by using the improved cell and the typical spectra measured for an (air)LSM-YSZ/YSZ/LSM-YSZ(air) cell at $900^{\circ}C$ were composed of two depressed arcs. Impedance characteristics of the LSM-YSZ cathodes were also affected by experimental conditions such as catalytic interlayer, composite cathode compositions and applied current.

Development of the Low Cost Impedance Spectroscopy System for Modeling the Electrochemical Power Sources (전기화학적 전력 기기의 모델링을 위한 저가의 임피던스 분광 시스템의 개발)

  • Lee, Ju-Hyung;Choi, Woo-Jin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.13 no.1
    • /
    • pp.46-54
    • /
    • 2008
  • In this paper, a low-cost impedance spectroscopy system(LCISS) suitable for modeling the electrochemical power sources such as fuel cells, batteries and supercapacitors is designed and implemented. Since the developed LCISS is composed of simple sensor circuits, commercial data acquisition board and LabVIEW software, a graphic language with powerful HMI(Human-Machine Interface), it is expected ta be widely used in substitution of the expensive EIS instruments. In the proposed system, the digital lock-in amplifier is adopted to achieve the accurate measurements even in the presence of the high level of noises. The developed hardware and software is applied to measure the impedance spectrum of the Ballard Nexa 1.2kW proton exchange membrane fuel cell stack and an equivalent impedance model is proposed based on the measurement results. The validity of the proposed equivalent circuit and the developed system is proven by the measurement of the ac power losses of the PEM fuel celt stack by the ripple current.