Development of the Low Cost Impedance Spectroscopy System for Modeling the Electrochemical Power Sources

전기화학적 전력 기기의 모델링을 위한 저가의 임피던스 분광 시스템의 개발

  • Published : 2008.02.20

Abstract

In this paper, a low-cost impedance spectroscopy system(LCISS) suitable for modeling the electrochemical power sources such as fuel cells, batteries and supercapacitors is designed and implemented. Since the developed LCISS is composed of simple sensor circuits, commercial data acquisition board and LabVIEW software, a graphic language with powerful HMI(Human-Machine Interface), it is expected ta be widely used in substitution of the expensive EIS instruments. In the proposed system, the digital lock-in amplifier is adopted to achieve the accurate measurements even in the presence of the high level of noises. The developed hardware and software is applied to measure the impedance spectrum of the Ballard Nexa 1.2kW proton exchange membrane fuel cell stack and an equivalent impedance model is proposed based on the measurement results. The validity of the proposed equivalent circuit and the developed system is proven by the measurement of the ac power losses of the PEM fuel celt stack by the ripple current.

본 논문에서는 연료전지나 배터리 및 슈퍼커패시터 등의 전기화학적 전력기기의 임피던스 모델링에 적합한 저가의 임피던스 분광 시스템을 설계하고 구현하였다. 제안된 시스템은 간단한 센서회로 및 상용 DAQ(Data Acquisition) Board와 강력한 HMI(Human-Machine Interface)를 지원하는 그래픽 언어인 LabVIEW 소프트웨어를 이용하여 구성되었고 고가의 EIS(Electrochemical Impedance Spectroscopy) 장비를 대체하여 널리 사용될 수 있을 것으로 기대된다. 또한, 제안된 시스템에서는 Lock-in Amplifier를 이용함으로써 노이즈(Noise)가 많은 환경에서도 측정 주파수 성분의 정확한 측정이 가능하게 하였다. 제안된 시스템을 이용하여 Ballard Nexa 1.2kW PEM 연료전지 스택의 주파수별 임피던스를 측정하였고, 이를 바탕으로 한 등가 임피던스 모델도 제안된다. 제시된 모델과 개발된 장비의 유용함은 리플전류에 의한 연료전지 스택의 교류 손실 측정을 통해 증명된다.

Keywords

References

  1. G. Maggio, V. Recupero, L. pino, 'Modeling polymer electrolyte fuel cells: an innovative approach,' Journal of Power Source 101, pp. 257-286, 2001
  2. J.C. Amphlett, R.F. Mann, B.A. Peppley, P.R. Roberge, A. Rodrigues, 'A model predicting transient responses of proton exchange membrane fuel cells,' Joutnal of Power Source 61, pp. 183-188, 1996 https://doi.org/10.1016/S0378-7753(96)02360-9
  3. J.M. Correa, F.A. Farret, L.N. Canha, 'An Analysis of the Dynamic Performance of Proton Exchange Membrane Fuel Cells Using an Electrochemical Model,' The 27th Annual Conference of the IEEE IECON, vol. 1, pp. 141-146, 2001
  4. R.S. Gemmen, 'Analysis for the effect of the ripple current on fuel cell operating condition,' ASME 369 (4), pp. 279-289, 2001
  5. J.R. Sleman, Y.P. Lin, 'Application of AC impedance in fuel cell research and development,' Electrochem. Acta 38 (14), pp. 2063-2073, 1993 https://doi.org/10.1016/0013-4686(93)80341-V
  6. L. Y. Chiu, B. Diong, R. S. Gemmen, 'An Improved Small-Signal Model of the Dynamic Behavior of PEM Fuel Cells,' IEEE Transactions on Industry Application, Vol. 40. No. 4, pp. 970-977, 2004 https://doi.org/10.1109/TIA.2004.830746
  7. C. Wang, M. H. Nehrir, S. R. Shaw, 'Dynamic and Model Validation for PEM Fuel Cells Using Electrical Circuits,' IEEE Transactions on Energy Conversion, Vol. 20. No. 2, pp. 442-451, 2005 https://doi.org/10.1109/TEC.2004.842357
  8. J. M. Correa, F. A. Farret, V. A. Popov, M. G. Simoes, 'Sensitivity Analysis of the Modeling Parameters Used in Simulation of Proton Exchange Membrane Fuel Cells,' IEEE Transactions on Energy Conversion, Vol. 20. No. 1, pp. 211-218, 2005, March https://doi.org/10.1109/TEC.2004.842382
  9. W. Friede, S. Rael, B. Davat, 'Mathematical Model and Characterization of the Transient Behavior of a PEM Feul Cell,' IEEE Transactions on Power Electronics, Vol. 19. No. 5, pp. 794-797, 2004, September https://doi.org/10.1109/TPEL.2004.826514
  10. J.R. Macdonald, Impedance Spectroscopy: Emphasizing Solid Materials and Systems, John Wiley & Sons, Inc., 1987
  11. W. Choi, J. Howze, P. Enjeti, Development of an equivalent circuit of the a fuel cell to evaluate the effects of inverter ripple current, Journal of Power Source 158, pp. 1324-1332, 2006 https://doi.org/10.1016/j.jpowsour.2005.10.038
  12. Eckhard Karden, Stephan Buller, RikW. De Doncker, 'Impedance measurements on lead acid batteries for state of charge, state of health and cranking capability prognosis in electric and hybrid electric vehicles,' Journal of Power Sources 144, pp. 72-78, 2000
  13. Kevin Cooper, 'Impedance Spectroscopy for Fuel Cell Diagnostics,' The 2006 Short Course in Fuel Cell Technology, 2006, February
  14. Stanford Research System, About Lock-in Amplifier, Application Note #3.(www.thinkSRS.com)
  15. Princeton Applied Research, Electrochemical Impedance Measurements: Instruments and Techniques, Application Note AC-3. (www.princetonappliedresearch.com)
  16. Yoon-Ho Kim, Byung-Soon Lee and Chang-Hee Lim, 'Analysis of fuel cell operation charateristics using equivalent models', Proceedings ICPE'95, Seoul 575-580
  17. 이수호, 이현우, 권순걸, '연료전지 전원 시스템의 설계 및 분석을 위한 PEMFC의 회로 모델,' 전력전자 학술대회 논문집, pp. 197-199, 2006
  18. 최우진, 전희종, '연료전지 시스템을 이용한 Line-Interactive 방식의 무정전 전원 공급 장치의 설계,' 한국조명설비학회 논문지 18권 6호, pp. 205-212, 2004