• Title/Summary/Keyword: 전기비저항 배열

Search Result 113, Processing Time 0.027 seconds

Relationship between Hydraulic Conductivity and Electrical Resistivity of Standard Sand and Glass Bead (표준사와 유리구슬을 이용한 수리전도도와 전기비저항의 관계)

  • Kim, Soodong;Park, Samgyu;Hamm, Se-Yeong
    • Economic and Environmental Geology
    • /
    • v.46 no.3
    • /
    • pp.215-220
    • /
    • 2013
  • We estimated the hydraulic conductivity of the sediments using constant-head permeability tests and electrical resistivity measurements with Jumoonjin standard sand of a uniform size and glass beads of different grain sizes. In this study, we determined the variations of the porosity, the hydraulic conductivity, and the resistivity in case 1 (changing the packing of the Jumoonjin standard sand) and in case 2 (varying the size of the glass beads). The results of case 1 showed that the hydraulic conductivity decreased with an increase in the electrical resistivity. This occurred because the sand grain while packing became rhombohedral with the a decrease of both the pore size and porosity. The results of the case 2 showed that the hydraulic conductivity increased due to the increase in the pore size as caused by the increased glass bead size. In addition, the porosity decreased and the electrical resistivity increased. Therefore, the relationship between the hydraulic conductivity and the electrical resistivity is negatively proportional as regards the grain packing with a change from cubic to rhombohedral whereas this relationship is positively proportional to the increase in the grain size.

The Technical Solution for Various Array Methods in Resistivity Survey (전기비저항 탐사의 다양한 배열 방법에 대한 해석 기법)

  • Park, Chung-Hwa
    • The Journal of Engineering Geology
    • /
    • v.17 no.1 s.50
    • /
    • pp.49-55
    • /
    • 2007
  • Various away methods are required in the electrical resistivity survey in order to find anomalous zone reliably. Array methods are classified as several groups. Among these group, a curved survey along the fixed elevation is designed to increase the mobility of men and survey equipments at the rough terrain. Another method is performed at the survey using inclined, curved, and horizontal boreholes. A survey can also be conducted in an arbitrary location by measurements of potentials for a multi sources. The complex data acquired using various away methods are represented by a correct images reconstructed from the 3D inversion. The element division is applied to the region in which the boreholes are curved and inclined because of a spatial discrepancies between the coordinate of each electrode and the nodal point in a model. The resistivity images are obtained from a good agreement for the anomalous zones in open slope and in survey using an inclined borehole.

Electrical Resistivity-Measurements for the Detection of Fracture Zones in the Woraksan Granitic-Bodies (월악산화강암체의 파쇄대규명을 위한 전기비저항탐사)

  • 김지수;권일룡
    • The Journal of Engineering Geology
    • /
    • v.7 no.2
    • /
    • pp.113-126
    • /
    • 1997
  • Electrical resistivity methods of dipole - dipole array profiling and Schiumberger array sounding were tested on a segment of the Woraksan granitic batholith for the research into the imaging of irregular attitudes of fracture zones in the crystaaline rock in terms of processing and interpretation schemes. By the dipole - dipole array method, inhomogeneities such as small scale of fracture zones were properly delineated down at some depth even within hard rock environment. Fracture zones were interpreted to be at the boundaries between the high amplitude zone and very low amplitude zone in the resistivity plot and they were also successfully outlined in two - dimensional layer and pseudo - three - dimensional volume constructed by the incorporation of vertical sounding data. The surface location of the fracture zones was correlated by the zero - crossing point in the VLF(very low frequency) electromagnetic data. Pseudo - three - dimensional attitudes of fracture zones were efficiently illuminated by optimum projection angle. The mean of bulk resistivity for the Woraksan granite and the near fracture zones is estimated to be approximately of 4,000 ohm - m which is much higher than the value of 700 ohm - m for the Rwachunri limesilicate environment. This difference is due to both the rock type, i.e., biotite granite vs limesilicate, and the occurrence of secondary openings of fold and fault associated with the intrusion of granite. In this study statistical analyses on the resistivity color plot were performed in terms of three representative statistical moments, i.e., standard deviation, skewness, and kurtosis. The fracture zones in the standard deviation plot were characterized by the higher value, compared to the value of homogeneous portion. The upper boundary of the high resistivity zone was also successfully delineated in the skewness and kurtosis plots.

  • PDF

Application of Depth Resolution and Sensitivity Distribution of Electrical Resistivity Tomography to Modeling Weathered Zones and Land Creeping (전기비저항 깊이분해능 및 감도분포: 풍화층 및 땅밀림 모델에 대한 적용)

  • Kim, Jeong-In;Kim, Ji-Soo;Ahn, Young-Don;Kim, Won-Ki
    • The Journal of Engineering Geology
    • /
    • v.32 no.1
    • /
    • pp.157-171
    • /
    • 2022
  • Electrical resistivity tomography (ERT) is a traditional and representative geophysical method for determining the resistivity distributions of surrounding soil and rock volumes. Depth resolution profiles and sensitivity distribution sections of the resistivities with respect to various electrode configurations are calculated and investigated using numerical model data. Shallow vertical resolution decreases in the order of Wenner, Schlumberger, and dipole-dipole arrays. A high investigable depth in homogeneous medium is calculated to be 0.11-0.19 times the active electrode spacing, but is counterbalanced by a low vertical resolution. For the application of ERT depth resolution profiles and sensitivity distributions, we provide subsurface structure models for two types of land-creping failure (planar and curved), subvertical fracture, and weathered layer over felsic and mafic igneous rocks. The dipole-dipole configuration appears to be most effective for mapping land-creeping failure planes (especially for curved planes), whereas the Wenner array gives the best resolution of soil horizons and shallow structures in the weathered zone.

Variation of Electrical Resistivity Characteristics in Sand-Silt Mixtures due to Temperature Change (온도변화에 따른 모래-실트 혼합토의 전기비저항 특성변화)

  • Park, Jung-Hee;Seo, Sun-Young;Hong, Seung-Seo;Kim, YoungSeok;Lee, Jong-Sub
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.10
    • /
    • pp.25-32
    • /
    • 2012
  • The application of electrical resistivity, which is related to charge mobility, has increased in the field of geotechnical engineering for the detection of underground cavern, faults and subsurface pollution level. The purpose of this study is to investigate the variation of electrical resistivity due to temperature change. Sand-silt mixture specimens prepared in the square freezing nylon cell are frozen in the frozen chamber. Four electrodes are attached on the four side walls of the freezing cell for the measurement of electrical resistance during temperature change. Electrical resistances of sand-silt mixtures with different degrees of saturation (0%, 2.5%, 5%, 10%, 20%, 40%, 60% and 100%) are measured as the temperature of specimens decrease from $20^{\circ}C$ to $-10^{\circ}C$. The electrical resistances determined by Ohm's law are transformed into the electrical resistivity by calibration. Experimental results show that the higher degree of saturation, the lower electrical resistivity at $20^{\circ}C$. Electrical resistivity gradually increases as the temperature decrease from $20^{\circ}C$ to $0^{\circ}C$. For the specimens with the degree of saturation of 15% or higer, electrical resistivity dramatically changes near the temperature of $0^{\circ}C$. In addition, very high electrical resistivity is observed regardless of the degree of saturation if the specimens are frozen. This study provides the fundamental information of electrical resistivity according to the soil freezing and temperature change demonstrates that electrical resistivity be a practical method for frozen soil investigation.

Negative Apparent Resistivity in Resistivity Method (전기비저항탐사에서 음의 겉보기 비저항)

  • Cho In-Ky;Kim Jung-Ho;Chung Seung-Hwan;Suh Jung-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.5 no.3
    • /
    • pp.199-205
    • /
    • 2002
  • In the resistivity method, the potential difference between two grounded electrodes is measured and this can be positive or negative. The apparent resistivity and the potential difference have the same polarity. Since the electric field is the gradient of the potential, the polarity of the potential difference depends on the direction of the electric field. If the direction of the vector connecting two grounded electrodes is the same to that of the electric field, the measured potential difference and the apparent resistivity become positive. If the opposite is the case, they become negative. In general, the primary electric field and the vector connecting two potential electrodes have the same direction in a surface resistivity method. In this case, the measured potential difference is always positive because the primary electric field is greater than the secondary field. Therefore, the apparent resistivity is always positive if noise is free and topography is flat. The secondary field component, however, can be greater than the primary field component along the vector connecting two potential electrodes in the cross-hole resistivity method. Furthermore, if the secondary electric field and the vector connecting two potential electrodes have an opposite direction, the apparent resistivity become negative. Consequently, the apparent resistivity may be negative in the region where the primary electric field component along the vector connecting two potential electrodes is very small.

Detection of Groundwater Table Changes in Alluvium Using Electrical Resistivity Monitoring Method (전기비저항 모니터링 방법을 이용한 충적층 지하수위 변동 감지)

  • 김형수
    • The Journal of Engineering Geology
    • /
    • v.7 no.2
    • /
    • pp.139-149
    • /
    • 1997
  • Electrical resistivity monitoring methods were adopted to detect groundwater table change in alluvium. Numerical modelling test using finite element method(FEM) and field resisfivity monitoring were conducted in the study. The field monitoring data were acquired in the alluvium deposit site in Jeong-Dong Ri, Geum River where pumping test had been conducted continuously for 20 days to make artificial changes of groundwater table. The unit distance of the electrode array was 4m and 21 fixed electrodes were applied in numerical calculation and field data acquisition. "Modified Wenner" and dipole-dipole array configurations were used in the study. The models used in two-dimensional numerical test were designed on the basis of the simplifving geological model of the alluvium in Jeong Dong Ri, Geum River. Numerical test results show that the apparent resistivity pseudosections were changed in the vicinity of the pootion where groundwater table was changed. Furthermore, there are some apparent resistivity changes in the boundary between aquifer and crystalline basement rock which overlays the aquifer. The field monitoring data also give similar results which were observed in numerical tests. From the numerical test using FEM and field resistivity monitoring observations in alluvium site of Geum River, the electrical monitoring method is proved to be a useful tool for detecting groundwater behavior including groundwater table change. There are some limitations, however, in the application of the resistivity method only because the change of groundwater table does not give enough variations in the apparent resistivity pseudosections to estimate the amount of groundwater table change. For the improved detection of groundwater table changes, it is desirable to combine the resistivity method with other geophysical methods that reveal the underground image such as high-resolution seismic and/or ground penetrating radar surveys.

  • PDF

Development and Verification of 4-Electrode Resistivity Probe (4전극 전기비저항 탐사장비의 개발 및 검증)

  • Kim, Joon-Han;Yoon, Hyung-Koo;Jung, Soon-Hyuck;Lee, Jong-Sub
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.3C
    • /
    • pp.127-136
    • /
    • 2009
  • The objective of this study is the development and verification of the 4-electrode resistivity probe (4ERP) for the estimation of electrical properties of the saturated soils. The 4ERPs with wedge and plane types are manufactured to obtain the electrical resistivity without polarization at the electrodes by using Wenner array. The wedge type is for the penetration into the soil samples and the plane type is for the installation into the cells used for the laboratory tests. The consolidation tests are carried out by using 6 types of glass beads and 3 types of sands in size. The test results show that the electrical resistivity increases with a decrease in the porosity, and the constant m used in Archie's law is dependent on the particle shape rather particle size. The one dimensional liquefaction tests show that the porosity obtained by the 4ERP is similar to that determined by the volume fraction. The penetration of the 4ERP into the large scale calibration chamber produces the resistivity profiles. This study demonstrates that the 4ERP may effectively estimate the porosity of the saturated soils.