• Title/Summary/Keyword: 적층 수

Search Result 1,395, Processing Time 0.029 seconds

p-i-n 구조 및 양자우물 구조를 갖는 InGaN/GaN 태양전지의 효율 및 특성 비교

  • Seo, Dong-Ju;Sim, Jae-Pil;Gong, Deuk-Jo;Lee, Dong-Seon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.161-162
    • /
    • 2011
  • 최근 광전자 분야에서는 미래 에너지 자원에 대한 관심과 함께 GaN 기반 태양전지 연구가 활발히 진행되고 있다. GaN 물질은 높은 전자 이동도와 높은 포화 속도 등 광전자 소자에 유리한 광, 전기적 특성들을 가지고 있다. 또한, In의 함량을 변화시켜가며, 0.7eV에서 3.4eV까지 밴드갭을 조절함으로써, 자외선부터 적외선까지 태양빛 스펙트럼의 대부분을 흡수할 수 있는 장점이 있다. InGaN 태양전지의 효율을 높이기 위해서는 In의 함량을 늘려 밴드갭을 줄이는 것이 중요하다. 하지만 GaN 와 InN 간의 격자 부정합으로 인해 In 함량이 높은 단결정 InGaN 층을 두껍게 성장 하는 것이 어렵다. 때문에 GaN 기반 태양전지 관련 연구 그룹들이 태양전지의 효율 향상을 위해 활성층에 양자우물(MQWs) 구조, Supper Lattice (SLs) 구조와 같이 얇은 InGaN/GaN 층을 주기적으로 반복하여 적층함으로써 높은 조성의 In을 함유한 상질의 InGaN/GaN 층을 성장하는 연구들을 진행해 왔다. 본 연구에서는, p-i-n 구조와 MQW 구조를 갖는 InGaN 기반 태양전지를 제작하여, 각각의 특성을 분석해 봄으로써, In0.1Ga0.9N 태양전지 활성층의 구조에 따른 장/단점에 대해 논의하였다. 먼저 MOCVD를 이용하여 200 nm의 i-In0.1Ga0.9N 활성층을 갖는 p-i-n 구조와 In0.19Ga0.81N/GaN(3 nm/8 nm) MQWs (8 periods) 구조를 갖는 태양전지 에피를 각각 성장하였고, 그 후 공정을 통해 그림 1과 같이 InGaN 태양전지 소자를 제작하였다. 그 후, 각 태양전지의 전류/전압 곡선과 외부양자효율을 측정하여 그림 2와 같은 결과를 얻었다. p-i-n과 MQW 샘플의 외부양자효율은 각각 ~70%, ~25%로 측정 되었다. MQW 샘플의 외부 양자효율이 높지 않음에도 불구하고 p-i-n 구조에 비해 높은 In 함량을 가지고 있으므로, 더 넓은 파장의 빛을 흡수하여, 높은 단락전류(0.778 mA/cm2)를 보이고 있다. 또한 p-i-n 구조에 비해 높은 개방전압(2.3V)를 가지고 있으므로, MQW 샘플이 약 17% 정도 높은 변환효율(1.4%)를 보이고 있다. 이후 추가적으로 p-i-n 과 MQW 구조의 InGaN 태양전지에 나타나는 Voc와 Jsc의 차이를 Polarization 효과를 비롯한 다양한 측면에서 분석해 보고자 한다.

  • PDF

A Study on the Characteristics of Bridge Bearings Behavior by Finite Element Analysis and Model Test (유한요소 해석과 모형실험을 통한 교량받침의 거동특성 연구)

  • Lee, Jae-Uk;Jung, Hie-Young;Oh, Ju;Park, Jin-Young;Kim, See-Dong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.5
    • /
    • pp.96-106
    • /
    • 2014
  • The increased vibration level of the railway bridge could make significant noise and, also, cause structural damages such as fatigue cracks. Related to these subjects, a spherical elastomeric bridge bearing, which is layered by hemispherical rubber and steel plates, was investigated in terms of its vibration performance. Several different shape factors could be considered by changing the curvature of hemispherical surface and size in rubber and steel plate thicknesses in the manufacturing stage. The performance of the spherical elastomeric bearing for the reduction in vibration was compared with that of the conventional bearing by performing vibration experiments on a scale-downed model. The rubber material characteristics and spherical shape are found to be important parameters in reducing the bridge vibration.

Reaction Synthesis of Ti3AlC2 at High Temperature (고온 반응에 의한 Ti3AlC2합성)

  • 황성식;박상환;한재호;한경섭;김태우
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.1
    • /
    • pp.87-92
    • /
    • 2003
  • $Ti_3AlC_2$was synthesized from TiCx and Al powder as a starting materials at the temperature range between$800^{circ}C;and;1500^{\circ}C$. The vacuum sintering and hot pressing methods were imployed to synthesize$Ti_3AlC_2$. The high purity$Ti_3AlC_2$was synthesized using TiCx and Al powder as starting materials without formation of Ti-Al intermetallic compound and Al-C compound.$Ti_2$AlC and$Ti_3AlC_2$were preferentially synthesized at$800^{\circ}C$and above$1200^{\circ}C$, respectively.$Ti_2$AlC formed at low temperature was transformed to$Ti_3AlC_2$by further reaction with TiC. In this study, the synthesis mechanism for$Ti_3AlC_2$was proposed. The synthesized$Ti_3AlC_2$showed the nano laminating structure consisting of$Ti_3AlC_2$crystal with the thickness of 45~120 nm.

A Micro Fluxgate Magnetic Sensor with Closed Magnetic Path (폐자로를 형성한 마이크로 플럭스게이트 자기 센서)

  • 최원열;황준식;강명삼;최상언
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.9 no.3
    • /
    • pp.19-23
    • /
    • 2002
  • This paper presents a micro fluxgate magnetic sensor in printed circuit board (PCB). In order to observe the effect of the closed magnetic path, the magnetic cores of rectangular-ring and two bars were each fabricated. Each fluxgate sensor consists of five PCB stack layers including one layer magnetic core and four layers of excitation and pick-up coils. The center layer as a magnetic core is made of a Co-based amorphous magnetic ribbon with extremely high DC permeability of ~100,000. Four outer layers as an excitation and pick-up coils have a planar solenoid and are made of copper foil. In case of the fluxgate sensor having the rectangular-ring shaped core, excellent linear response over the range of -100 $\mu$T to + 100 $\mu$T is obtained with 540 V/Tsensitivity at excitation square wave of 3 $V_{p-p}$ and 360 KHz. The chip size of the fabricated sensing element is $7.3 \times 5.7\textrm{mm}^2$. The very low power consumption of ~8 mW was measured. This magnetic sensor is very useful for various applications such as: portable navigation systems, telematics, VR game and so on.n.

  • PDF

Microstructure analyses of aluminum nitride (AlN) using transmission electron microscopy (TEM) and electron back-scattered diffraction (EBSD) (투과전자현미경과 전자후방산란회절을 이용한 AlN의 미세구조 분석)

  • Joo, Young Jun;Park, Cheong Ho;Jeong, Joo Jin;Kang, Seung Min;Ryu, Gil Yeol;Kang, Sung;Kim, Cheol Jin
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.25 no.4
    • /
    • pp.127-134
    • /
    • 2015
  • Aluminum nitride (AlN) single crystals have attracted much attention for a next-generation semiconductor application because of wide bandgap (6.2 eV), high thermal conductivity ($285W/m{\cdot}K$), high electrical resistivity (${\geq}10^{14}{\Omega}{\cdot}cm$), and high mechanical strength. The bulk AlN single crystals or thin film templates have been mainly grown by PVT (sublimation) method, flux method, solution growth method, and hydride vapor phase epitaxy (HVPE) method. Since AlN suffers difficulty in commercialization due to the defects that occur during single crystal growth, crystalline quality improvement via defects analyses is necessary. Etch pit density (EPD) analysis showed that the growth misorientations and the defects in the AlN surface exist. Transmission electron microscopy (TEM) and electron back-scattered diffraction (EBSD) analyses were employed to investigate the overall crystalline quality and various kinds of defects. TEM studies show that the morphology of the AlN is clearly influenced by stacking fault, dislocation, second phase, etc. In addition EBSD analysis also showed that the zinc blende polymorph of AlN exists as a growth defects resulting in dislocation initiator.

A Study of Electrical Anisotropy of n-type a-plane GaN films grown on $\gamma$-plane Sapphire Substrates ($\gamma$-plane 사파이어 기판 위에 성장한 무분극 ${alpha}$-plane GaN 층의 전기적 비등방성 연구)

  • Kim, Jae-Bum;Kim, Dong-Ho;Hwang, Sung-Min;Kim, Tae-Geun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.8
    • /
    • pp.1-6
    • /
    • 2010
  • We report on the electrical properties of Ti/Al/Ni/Au (20 nm/ 150 nm/ 30 nm/ 100 nm) Ohmic contacts and the anisotropic conductivity of n-type ${\alpha}$-plane ([11-20]) GaN grown on $\gamma$-plane ([1-102]) sapphire substrates. The Ti/Al/Ni/Au Ohmic contacts and their sheet resistances are characterized by using the transfer length method (TLM) as a function of azimuthal angles. It is found that the specific contact resistance does not depend on the axis orientation and there are significant electrical anisotropy in ${\alpha}$-plane GaN films on $\gamma$-plane sapphire substrates, and the sheet resistance varies with azimuthal angles. The sheet resistance values in the direction parallel to m-axis [1-100] are 25% ~ 75% lower than those parallel to c-axis [0001] directions. Thus, Basal stacking faults (BSFs) are offered as a feasible source of the anisotropic mobility in defected m-axis direction because the band-edge discontinuities owing to the differential band gap structure.

On the Development of Bonded Joints for Modular FRP Hulls using Moulding-In Concept (모듈방식 FRP 선체를 위한 Moulding-In 개념 기반의 접합 이음부 개발에 관한 연구)

  • Jeong, Han Koo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.6
    • /
    • pp.531-539
    • /
    • 2017
  • This paper deals with the development of bonded joints for fibre reinforced plastic (FRP) hull structures using moulding-in concept. Focus is placed on bonded in-plane connections between two adjacent panels that could form the boundaries of hull structural module. Traditional construction in FRP hull structures requires the construction of a mould, usually from steel or aluminium. In this construction the FRP materials are laid in the mould, and resin is saturated, and then the structural member is cured. This is expensive since it involves the fabrication of metal hull mould for every different hull type, which is sacrificed after the production of the FRP ship. One way of encouraging greater use of FRP in ship construction is to investigate the possible construction of FRP hull structures in a similar manner to metallic ships, that is in terms of blocks or modules. Such a manner of construction would eliminate the need for expensive hull moulds permitting greater flexibility in the construction of FRP ships. The main issue then would be the design and construction of adequate bonded connections between adjacent panels. To fulfill this object, the simplified and automated way of manufacturing joint edge shapes for bonded joints is developed, and their structural assessment is performed in both experimentally and numerically.

Large-strain Soft Sensors Using Elastomers Blended with Exfoliated/Fragmented Graphite Particles (탄성중합체와 박리 후 파쇄된 흑연입자 복합재를 이용한 대변형률 연성 센서)

  • Park, Sungmin;Nam, Gyungmok;Kim, Jonghun;Yoon, Sang-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.9
    • /
    • pp.815-820
    • /
    • 2016
  • An elastic polymer (e.g., PDMS) blended with EFG particles is a promising conductive composite for fabricating soft sensors that can detect an object's deformation up to or more than 50%. Here, we develop large-strain, sprayable soft sensors using a mixture of PDMS and EFG particles, which are used as a host elastomer and electrically conductive particles, respectively. A solution for a conductive composite mixture is prepared by the microwave-assisted graphite exfoliation, followed by ultrasonication-induced fragmentation of the exfoliated graphite and ultrasonic blending of PDMS and EFG. Using the prepared solutions for composite and pure PDMS, 1-, 2-, and 3-axis soft sensors are fabricated by airbrush stencil technique where composite mixture and pure PDMS are materials for sensing and insulating layers, respectively. We characterize the soft strain sensors after investigating the effect of PDMS/EFG wt% on mechanical compliance and electrical conductance of the conductive composite.

Late Quaternary Transgressive Stratigraphy and its Depositional History in the Southeastern Continental Shelf, Korea (한국 남동해역 대륙붕 후 제4기 해침퇴적층서 및 퇴적역사)

  • Yoo, Dong-Geun;Lee, Chi-Won;Kim, Seong-Pil;Park, Soo-Chul
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.4
    • /
    • pp.349-356
    • /
    • 2010
  • Analysis of high-resolution seismic profiles acquired from the southeastern continental shelf of Korea reveals that the late Quaternary transgressive deposits consist of six seismic units created in response to sea-level rise. These units with different seismic facies and geometry can be grouped into two distinct depositional wedges (paralic and marine) bounded by a ravinement surface. The paralic component underlying the ravinement surface consists of the sediment preserved from shoreface erosion and contains incised-channel fill, ancient beach-shoreface deposit and estuarine deposit. The top of paralic unit is truncated by a ravinement surface and overlain by marine component. The marine component consists of the sediment produced through shoreface erosion during landward transgression and contains mid-shelf sand sheet, mid-shelf sand ridge and inner shelf sand sheet. Such transgressive stratigraphic architecture of six sedimentary units is controlled by a function of lateral changes in the balance among rates of relative sea-level rise, sediment input and marine processes at any given time.

Preparation and Properties of Organic Electroluminescent Devices (유기 전계발광소자의 제작과 특성 연구)

  • 노준서;장호정
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.9 no.1
    • /
    • pp.9-13
    • /
    • 2002
  • Recently, Organic electroluminescent devices (OELDs) have been demonstrated the medium sized full color display with effective multi-layer thin films. In this study, the multi-layer OELDs were prepared on the patterened ITO (indium tin oxide)/glass substrates by the vacuum thermal evaporation method. The low molecule compounds such as $Alq_3$(trim-(8-hydroxyquinoline)aluminum) and CTM (carrier transfer material) as the electron transport and injection layers as well as TPD (triphenyl-diamine) and CuPc (copper phthalocyanine) as the hole transport and injection layers were used. The luminance was rapidly increased above the threshold voltage of 10 V. The luminance and emission spectrum for the OELDs samples with $A1/CTM/Alq_3$/TPD/1TO structures were found to be 430 cd/$m^2$and 512 nm at 17 V showing green color emission. In contrast, the samples with $Li-A1/Alq_3$/TPD/CuPC/1TO multi-structures showed 508 nm in emission spectrum and 650 cd/$m^2$at 17 V in the luminance. The increment of luminance may be ascribed to the improved efficiency of recombination in the region of the emission layers by the deposition of CuPc as hole injection layer and the low work function of the Li-Al electrode compared to the Al electrode.

  • PDF