• Title/Summary/Keyword: 적층 가공

Search Result 245, Processing Time 0.041 seconds

Processing of Metallic Materials by Gas Atomized Spray Forming (고성형성 합금 제조를 위한 가스 분무성형 공정)

  • Baik, K. H.;Seok, H. K.
    • Transactions of Materials Processing
    • /
    • v.14 no.7 s.79
    • /
    • pp.587-594
    • /
    • 2005
  • 분무성형공정은 급냉응고 및 결정입자 제어에 따른 고품위 소재 개발의 장점과 함께 고밀도 near-net-shape 제품의 제조가 가능한 합금제조기술이다 분무성형체의 미세조직은 적층표면에 도달하는 액적들의 평균 열용량, 즉 고상분율에 의하여 결정되며, 이는 액적의 비행과정에서의 분사가스-액적간의 열전달과 적층표면에서의 열유입과 열유출 속도에 영향을 받는다. 실제 다양한 공정변수들이 복합적으로 미세조직 형성과정에 영향을 미치지만, 균일한 미세조직을 얻기 위하여서는 적층표면에서의 온도와 고상분율을 항상 일정하게 제어하여야만 한다 즉, 적층표면 온도를 분무 성형공정중에 지속적으로 측정하여 이를 공정 제어 시스템에 feedback하여 원하는 적층표면온도를 유지하도록 공정변수를 제어하는 것이 필수적이다. 분무성형에 제조된 성형체는 합금원소의 편석이 없고 미세한 등방성의 결정립으로 이루어진 특징적인 미세조직을 나타낸다 이와 같은 미세조직으로 인하여 분무성형체는 우수한 성형성과 기계가공성을 나타내며, 또한 분무성형-후속가공된 최종 제품은 잉곳주조에 의하여 제조된 것과 비교하여 크게 향상된 기계적 성질을 가진다.

RP model decomposition algorithm for making 3D layer (3D layer 생성을 위한 RP 모델 분할 알고리즘)

  • 이재호;박준영
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2000.04a
    • /
    • pp.724-727
    • /
    • 2000
  • Rapid Prototyping(RP)이란 3차원 솔리드 모델을 단면화한 뒤 하나씩 적층하는 가공방식을 총칭한다. 이때 단면화하는 방법에 따라서 uniform, adaptive slicing으로 나뉘며, 입력 모델에 따라서 direct slicing과 STL을 이용한 방식으로 나뉜다. 적층 방법에 따라서는 연속된 2D 윤곽을 기반으로 적층하는 vertical layer 방식과 인접한 두 개의 2D 윤곽들을 연결하며 만들어진 3D layer를 기반으로 가공하는 sloping layer방식으로 나뉠 수 있다. 현재 상용 RP 시스템들에서는 거의 모든 경우 vertical layer 방식이 채택되어 사용되고 있다. RP와 절삭 공정, 예를 들면 CNC 밀링의 장점을 효율적으로 결합하기 위해서는 임의의 복잡한 형상을 갖는 솔리드 모델을 정밀도에 제한이 없이 제조할 수 있어야 한다. 그러나 절삭 공정은 특별한 전문적 지식들을 필요로 한다 또한 상용 RP에서 사용하는 순차적인 적층 작업으로는 가공할 수 없는 형상들이 많다. 대표적인 것으로 지지대를 필요로 하는 형상들이 있다. 이러한 형상들을 지원하기 위해서는 복잡한 3D 형상을 절삭 가능한 형식으로 분할하는 것과 적층 가능한 순서대로 공정 계획하는 것이 필요하게 된다. 본 연구에서는 SDM에서 제시된 3D 분할 방법이 솔리드 모델을 기반으로 전개되어 STL file과 같은 삼각다면체 형식으로 근사화된 모델에 적용하기 어렵다는데 착안하여 STL file에서 읽어들인 삼각 다면체 모델을 가공 가능한 3D 형상으로 분할하는 알고리즘을 제시하고자 한다.

  • PDF

Fabrication of additive manufacturing interim denture and comparison with conventional interim denture: A case report (적층가공을 이용한 임시의치 제작 및 기존방식의 임시의치와의 비교 증례)

  • Kim, Hyun-Ah;Lim, Hyun-Pil;Kang, Hyeon;Yang, Hongso;Park, Sang-Won;Yun, Kwi-Dug
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.57 no.4
    • /
    • pp.483-489
    • /
    • 2019
  • With development of digital dentistry, the 3-dimensional (3D) manufacturing industry using computer-aided design and computer-aided manufacturing (CAD/CAM) has grown dramatically in recent years. Denture fabrication using digital method is also increasing due to the recent development of digital technology in dentistry. The 3D manufacturing process can be categorized into 2 types: subtractive manufacturing (SM) and additive manufacturing (AM). SM, such as milling is based on cutting away from a solid block of materal. AM, such as 3D printing, is based on adding the material layer by layer. AM enables the fabrication of complex structures that are difficult to mill. In this case, additive manufacturing method was applied to the fabrication of the resin-based complete denture to a 80 year-old patient. During the follow-up periods, the denture using digital method has provided satisfactory results esthetically and functionally.

Comparative evaluation of the subtractive and additive manufacturing on the color stability of fixed provisional prosthesis materials (고정성 임시 보철물 재료의 색 안정성에 대한 절삭 및 적층가공법의 비교평가)

  • Lee, Young-Ji;Oh, Sang-Chun
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.37 no.2
    • /
    • pp.73-80
    • /
    • 2021
  • Purpose: The purpose of this study is to compare the color stability of provisional restorative materials fabricated by subtractive and additive manufacturing. Materials and Methods: PMMA specimens by subtractive manufacturing and conventional method and bis-acryl specimens by additive manufacturing were fabricated each 20. After immersing specimens in the coffee solution and the wine solution, the color was measured as CIE Lab with a colorimeter weekly for 4 weeks. Color change was calculated and data were analyzed with one-way ANOVA and the Tukey multiple comparisons test (α = 0.05). Results: PMMA provisional prosthetic materials by subtractive manufacturing showed superior color stability compared to bis-acryl provisional prosthetic materials by additive manufacturing (P < 0.05), and showed similar color stability to the PMMA provisional prosthetic materials by conventional method (P > 0.05). Conclusion: It is recommended to fabricate provisional restorations by subtractive manufacturing in areas where esthetics is important, such as anterior teeth, and consideration of the color stability will be required when making provisional prosthetic using additive manufacturing.

고속 회전 공구를 이용한 보급형 폼 전용 가공 장치 개발

  • 김효찬;이상호;양동열;박승교;안동규
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.242-242
    • /
    • 2004
  • 다양하게 변화하는 소비자의 요구에 만족하기 위해 제품 디자인의 빠른 변화가 요구되며 이에 따라 빠르게 3차원 형상을 구현하는 기술이 필요하게 되었다. 일반적으로 사용되는 적층 방식의 쾌속 조형기술은 고가의 재료비 및 운영비, 기능성 파트 제작의 어려움, 표면에 적층 무늬가 존재 등의 문제점이 존재한다. 그러나 기계 가공 방식의 경우 다양한 재료의 가공이 가능하고 높은 형상 정밀도가 유지되는 장점이 있다. 특히, 폼을 이용하여 3차원 형상을 구현하는 방법은 현업에서 많이 사용되고 있다.(중략)

  • PDF

Review on additive manufacturing of dental materials (치과용 재료의 적층가공에 대한 문헌고찰)

  • Won, Sun;Kang, Hyeon-Goo;Ko, Kyung-Ho;Huh, Yoon-Hyuk;Park, Chan-Jin;Cho, Lee-Ra
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.37 no.1
    • /
    • pp.1-15
    • /
    • 2021
  • Additive manufacturing (AM) for dental materials can produce more complex forms than conventional manufacturing methods. Compared to milling processing, AM consumes less equipment and materials, making sustainability an advantage. AM can be categorized into 7 types. Polymers made by vat polymerization are the most suitable material for AM due to superior mechanical properties and internal fit compared to conventional self-polymerizing methods. However, polymers are mainly used as provisional restoration due to their relatively low mechanical strength. Metal AM uses powder bed fusion methods and has higher fracture toughness and density than castings, but has higher residual stress, which requires research on post-processing methods to remove them. AM for ceramic use vat polymerization of materials mixed with ceramic powder and resin polymer. The ceramic materials for AM needs complex post-processing such as debinding of polymer and sintering. The low mechanical strength and volumetric accuracy of the products made by AM must be improved to be commercialized. AM requires more research to find the most suitable fabrication process conditions, as the mechanical properties and surface of any material will vary depending on the processing condition.

Comparison analysis of fracture load and flexural strength of provisional restorative resins fabricated by different methods (제작방법에 따른 임시 수복용 레진의 파절강도 및 굴곡강도에 관한 연구)

  • Cho, Won-Tak;Choi, Jae-Won
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.57 no.3
    • /
    • pp.225-231
    • /
    • 2019
  • Purpose: This study was undertaken to compare fracture and flexural strength of provisional restorative resins fabricated by additive manufacturing, subtractive manufacturing, and conventional direct technique. Materials and methods: Five types of provisional restorative resin made with different methods were investigated: Stereolithography apparatus (SLA) 3D printer (S3Z), two digital light processing (DLP) 3D printer (D3Z, D3P), milling method (MIL), conventional method (CON). For fracture strength test, premolar shaped specimens were prepared by each method and stored in distilled water at $37^{\circ}C$ for 24 hours. Compressive load was measured using a universal testing machine (UTM). For flexural strength test, rectangular bar specimens ($25{\times}2{\times}2mm$) were prepared by each method according to ISO 10477 and flexural strength was measured by UTM. Results: Fracture strengths of the S3Z, D3Z, and D3P groups fabricated by additive manufacturing were not significantly different from those of MIL and CON groups (P>.05/10=.005). On the other hand, the flexural strengths of S3Z, D3P, and MIL groups were significantly higher than that of CON group (P<.05), but the flexural strength of D3Z group was significantly lower than that of CON group (P<.05). Conclusion: Within the limitation of our study, provisional restorative resins made from additive manufacturing showed clinically comparable fracture and flexural strength as those made by subtractive manufacturing and conventional method.

Tensile bond strength of chairside reline resin to denture bases fabricated by subtractive and additive manufacturing (적층가공과 절삭가공으로 제작한 의치상과 직접 첨상용 레진 간의 인장결합강도 비교)

  • Kim, Hyo-Seong;Jung, Ji-Hye;Bae, Ji-Myung;Kim, Jeong-Mi;Kim, Yu-Lee
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.58 no.3
    • /
    • pp.177-184
    • /
    • 2020
  • Purpose: The purpose of this study was to compare and evaluate the tensile bond strength of chairside reline resin to denture base resin fabricated by different methods (subtractive manufacturing, additive manufacturing, and conventional heat-curing). Materials and methods: Denture base specimens were fabricated as cuboid specimens with a width of 25 mm × length 25 mm × height 3 mm by subtractive manufacturing (VITA VIONIC BASE), additive manufacturing (NextDent Base) and conventional heat-curing (Lucitone 199). After storing the specimens in distilled water at 37℃ for 30 days and drying them, they were relined with polyethyl methacrylate (PEMA) chairside reline resin (REBASE II Normal). The subtractive and additive manufacturing groups were set as the experimental group, and the heat-curing group was set as the control group. Ten specimens were prepared for each group. After storing all bound specimens in distilled water at 37℃ for 24 hours, the tensile bond strength between denture bases and chairside reline resin was measured by a universal testing machine at a crosshead speed of 10 mm/min. The fracture pattern of each specimen was analyzed and classified into adhesive failure, cohesive failure, and mixed failure. Tensile bond strength, according to the fabrication method, was analyzed by 1-way ANOVA and Bonferroni's method (α=.05). Results: Mean tensile bond strength of the heat-curing group (2.45 ± 0.39 MPa) and subtractive manufacturing group (2.33 ± 0.39 MPa) had no significant difference (P>.999). The additive manufacturing group showed significantly lower tensile bond strength (1.23 ± 0.36 MPa) compared to the other groups (P<.001). Most specimens of heat-curing and subtractive manufacturing groups had mixed failure, but mixed failure and adhesive failure showed the same frequency in additive manufacturing group. Conclusion: The mean tensile bond strength of the subtractive manufacturing group was not significantly different from the heat-curing group. The additive manufacturing group showed significantly lower mean tensile bond strength than the other two groups.

A Study on Cladding on an Inclined Cylindrical Surface using DED Additive Manufacturing (DED 적층 방식을 활용한 원통면 경사 적층에 관한 연구)

  • Kim, Yeoung-Il
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.5
    • /
    • pp.91-97
    • /
    • 2022
  • The Directed Energy Deposition (DED) is a representative metal additive manufacturing method. Owing to its strong point of repairment, its application is gradually spreading in aerospace applications, power generation, military components, and mold making. 5-axis cladding is needed to repair damage, such as wear and scratches on cylindrical surfaces to circular-shaped parts, including sleeves and liners. Furthermore, the condition of cladding on inclined parts must also be considered to prevent interference between the nozzle and the part. In this study, the effects of changes in scanning speed due to the 5-axis control system and differences from the height of laser beam irradiation due to inclination are evaluated among the items that should be additionally considered in 5-axis cladding compared to 3-axis cladding. Moreover, the trends of the width and height of the clad are identified by different tilting angles via single line cladding. Lastly, cladding methods on cylindrical surfaces at various angles are proposed to enhance the clad quality and post-processing efficacy. These results can be applied with 5-axis cladding on inclined surfaces, including cylindrical surfaces.