• Title/Summary/Keyword: 적층평판

Search Result 119, Processing Time 0.023 seconds

Low-Velocity Impact Response of Hybrid Laminated Composite Plate (혼합적층된 복합재료평판의 저속충격응답)

  • Lee, Young-Shin;Kang, Kun-Hee;Park, Oung
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.3
    • /
    • pp.713-722
    • /
    • 1991
  • 본 연구에서는 graphite/epoxy와 glass/epoxy 그리고 graphite/epoxy와 kevl- ar/epoxy의 혼합적층된 복합재료 평판의 저속충격에 대한 응답을 유한요소 모델을 사 용하여 수치해석 한후, 각각의 단일적층판들의 결과와 비교하였으며, 이때의 접촉력 관계식은 Yang과 Sun이 제안한 수정된 접촉법칙을 이용하였다. 또한, 수치해석 결과 에서의 충격자의 속도변화로써 혼합적창판 배열에 따른 에너지 흡수율을 계산하였고, 이를 충격특성이 취약한 graphite/epoxy 단일 적층판의 결과와 비교 고찰하였다.

Buckling Analysis of Laminated Composite Plates (복합적층평판의 좌굴해석)

  • 원종진
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.2
    • /
    • pp.23-28
    • /
    • 1998
  • In this paper, the experimental and numerical results of buckling loads for laminated composite plates are compared. Using boundary conditions of buckling test are all fixed supports. Experiments were conducted for plates with fiber angles $ heta$=30$^{\circ}$, 45$^{\circ}$,60$^{\circ}$ and aspect ratio a/b=0.8. Experimental results were obtained from load-deflection curves of buckling test. Numerical methods were presented to evaluate buckling loads, using structural analysis results from ANSYS.

  • PDF

Analysis of Sandwich Plates with Composite Facings based on Zig-Zag Models (지그재그 모델에 의한 복합샌드위치평판의 해석)

  • Ji, Hyo Seon;Chang, Suk Yun
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.6
    • /
    • pp.749-758
    • /
    • 2000
  • This study presents a governing equations of bending behavior of sandwich plates with thick metal, polymer composite facings. Based on zig-zag models for through thickness deformations, the transverse shear deformation of composite facings is included. All edges of plate are assumed to be simply supported. Results of the bending analysis under lateral loads are presented for the influence of various lay up sequences of antisymmetric angle-ply laminated facings. The accuracy of the approach is ascertained by comparing solutions from the sandwich plates theory with composite facings to the laminated plates theory. Since the present analysis considers the bending stiffness of the core and also the transverse shear deformations of the laminated facings, the proposed method showed higher than that calculated according to the general laminated plates theory. The information presented might be useful to design sandwich plates structure with metal, polymer matrix composite facings.

  • PDF

Analysis Study on the Damage of Crack Happening with the Bending at CFRP Plate due to Stacking Angle (적층각도에 따른 CFRP 평판에서의 굽힘으로 발생한 크랙 파손에 관한 해석적 연구)

  • Hwang, Gue-wan;Cho, Jae-ung
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.3
    • /
    • pp.185-190
    • /
    • 2017
  • This study investigates the bending stress, shear stress and deformation energy happening at the inner fiber structure when the bending moment is applied to he specimen with flat shape composed of carbon fiber. As CFRP is composed of innumerable fibers with multi-axes, the stress under bending condition can be effectively distributed. Theses stresses is shown to increase again at the starting point as this angle of $60^{\circ}$. Therefore, the condition at the stacking angle of $60^{\circ}$ is seen to become most adequate under the state where the bending stress happens. On the basis of this study result, the damage property by the bending at the plate due to stacking angle was examined through the analytic approach. it is thought that this study can be devoted to the safe design for damage prevention and durabilty improvement. Also, the esthetic sense can be shown as the designed factor of shape with flat plate is grafted onto the convergence technique.

Subparametric Element Based on Partial-linear Layerwise Theory for the Analysis of Orthotropic Laminate Composites (직교이방성 적층구조 해석을 위한 부분-선형 층별이론에 기초한 저매개변수요소)

  • Ahn, Jae-Seok;Woo, Kwang-Sung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.2
    • /
    • pp.189-196
    • /
    • 2009
  • This paper presents the subparametric finite element model formulated by partial-linear layerwise theory for the analysis of laminate composites. The proposed model is based on refined approximations of two dimensional plane for orthotropic thick laminate plate as well as thin case. Three dimensional problem can be reduced to two dimensional case by assuming piecewise linear variation of in-plane displacement and a constant value of out-of-plane displacement across the thickness. The integrals of Legendre polynomials are chosen to define displacement fields and Gauss-Lobatto numerical integration is implemented in order to directly obtain maximum values occurred at the nodal points of each layer without other extrapolation techniques. The validity and characteristics of the proposed model have been tested by using orthotropic multilayered plate problem as compared to the values available in the published references. In this study, the convergence test has been carried out to determine the optimal layer model in terms of central deflection and stresses. Also, the distribution of displacements and stresses across the thickness has been investigated as the number of layer is increased.

Papers : Snap - through Phenomena on Nonlinear Thermopiezoelastic Behavior of Piezolaminated Plates (논문 : 압전적층판의 비선형 열압전탄성 거동에서의 스냅 - 스루 현상)

  • O,Il-Gwon;Sin,Won-Ho;Lee,In
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.1
    • /
    • pp.36-43
    • /
    • 2002
  • Thermopiezoelastic snap-through phenomena of piezolaminated plates are investigated by applying an are-length scheme to Newton-Raphson method. Based on the layerwise displacement theory and von Karman strain-displacement relationships, nonlinear finite element formulations are derived for the thermopiezoelastic composite plates. From the static and dynamic viewpoint, nonlinear thermopierzoelastic behavior and vibration characteristicx are stuied for symmetric and eccentric structural models with various piezoelestric actuation modes. Present results show the possibility to enhance the performance, namely thermopiezoelastic snapping, induced by the excessive piezoelectric actuation in the active suppression of thermally buckled large deflection piezolaminated paltes.

The Research of Single Fed Broadband Planar Array Antenna with Modified Stacked-Structure using Circular Polarization (변형된 적층구조를 갖는 단일급전방식의 광대역 평판형 배열안테나 연구)

  • 정영배;이영환;문정익;박성욱;하재권
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.6
    • /
    • pp.919-930
    • /
    • 2001
  • This paper presents a wideband technique of impedance and axial-ratio bandwidth which uses the stacked planar array structure through optimum design of sub-polarization generating sections and parasitic patch. So, the effect of the dual-resonance characteristic can contribute to the bandwidth expansion of single fed planar array antenna using circular polarization which doesn\`t hire previous bandwidth expansion technique. The antenna can be used as a dual-band antenna by adjusting the resonance frequencies as well, and then the antenna is designed and fabricated in the frequency band of domestic satellite-TV service. This antenna has the performance of 9.7 % impedance bandwidth and 24 dBi of antenna gain. And it has also 2.8 % and 1.4 % of 3 dB Axial-ratio bandwidth at 11.4 GHz and 11.8 GHz respectively.

  • PDF

Structural Performance Improvement of Composite Plates By Using Curvilinear Fiber Format (곡선섬유를 이용한 복합재료 평판의 구조적 성능 향상)

  • 이호영
    • Composites Research
    • /
    • v.12 no.6
    • /
    • pp.31-42
    • /
    • 1999
  • In aerospace industry, the improvement of structural performance of fight structure without increasing weight has great advantage. In this study. an innovative design method to increase the buckling load and tension failure load at the same time without increasing the weight of composite plates was investigated. By using the curvilinear fiber format a method to increase the buckling load and tension failure load simultaneously was investigated for composite plates with central hole with finite element method. It was investigated how much gain can be obtained with curvilinear fiber format for the plates with different hole size and different stacking sequence. And, for the cases studied, the failure mechanism was also investigated. For the manufacturing of the curvilinear fiber format, smoothly and continuously changing fiber path is necessary. In this study, a simple method to find the smoothly changing fiber path by using the fiber angles obtained with finite element method was presented.

  • PDF

p-Version Finite Element Analysis of Composite Laminated Plates with Geometric and Material Nonlinearities (기하 및 재료비선형을 갖는 적층평판의 p-Version 유한요소해석)

  • 홍종현;박진환;우광성
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.3
    • /
    • pp.491-499
    • /
    • 2002
  • A p-version finite element model based on degenerate shell element is proposed tot the analysis of orthotropic laminated plates. In the nonlinear formulation of the model, the total Lagrangian formulation is adopted with large deflection and moderate rotation being accounted tot in the sense of yon Karman hypothesis. The material model is based on the Huber-Mises yield criterion and Prandtl-Reuss flow rule in accordance with the theory of strain hardening yield function, which is generalized lot anisotropic materials by introducing the parameters of anisotropy. The model is also based on extension of equivalent-single layer laminate theory(ESL theory) with shear deformation, leading to continuous shear strain at the interface of two layers. The integrals of Legendre polynomials are used for shape functions with p-level varying from 1 to 10. Gauss-Lobatto numerical quadrature is used to calculate the stresses at the nodal points instead of Gauss points. The validity of the proposed P-version finite element model is demonstrated through several comparative points of iew in terms of ultimate load, convergence characteristics, nonlinear effect, and shape of plastic tone.