• Title/Summary/Keyword: 적층판 모델

Search Result 98, Processing Time 0.021 seconds

Study on Mode I Fracture Toughness and FEM analysis of Carbon/Epoxy Laminates Using Acoustic Emission Signal (음향 방출 신호를 이용한 탄소/에폭시 적층판의 Mode I 파괴 인성 및 유한요소해석에 관한 연구)

  • Cho, Hyun-jun;Jeon, Min-Hyeok;No, Hae-Ri;Kim, In-Gul
    • Composites Research
    • /
    • v.35 no.2
    • /
    • pp.61-68
    • /
    • 2022
  • Composite materials have been used in aerospace industry and many applications because of many advantages such as specific strength and stiffness and corrosion resistance etc. However, it is vulnerable to impacts, these impact lead to formation of cracks in composite laminate and failure of structures. In this paper, we analyzed Mode I fracture toughness of Carbon/Epoxy laminates using acoustic emission signal. DCB test was carried out to analyze Mode I failure characterization of Carbon/Epoxy laminates, and AE sensor was attached to measure AE signal induced by failure of specimen. Fracture toughness was calculated using cumulative AE energy and measured crack length using camera. The calculated fracture toughness was applied in FE model and the result of FE analysis compared with DCB test results. The results show good agreement with between FEM and DCB test results.

Natural vibrations of laminated anisotropic shells of revolution (적층 이방성 회전체 쉘의 고유진동 해석)

  • 전종균
    • Computational Structural Engineering
    • /
    • v.8 no.3
    • /
    • pp.135-141
    • /
    • 1995
  • Any arbitrarily shaped laminated composite shells of revolution can be sum of the conical shell elements. Therefore, finite element model of conical shell element will be developed in this study. To verify consistency and validity of this model, natural vibrations of this model is compared with the analytical solution of cylindrical shell. Herein, an extensive parametric study is presented to assess the modeling capability of this model in class of laminated composite cylinders. It is seen that the proposed model provides highly accurate results with analytical solution. Once development of this conical shell element is done, any arbitrarily shaped composite shells of revolution can be easily analyzed.

  • PDF

Mixed Mode Analysis using Two-step Extension Based VCCT in an Inclined Center Crack Repaired by Composite Patching (복합재료 팻칭에 의한 중앙경사균열에서 2단계 확장 가상균열닫힘법을 사용한 혼합모우드해석)

  • Ahn, Jae-Seok;Woo, Kwang-Sung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.1A
    • /
    • pp.11-18
    • /
    • 2012
  • This paper deals with the numerical determination of the stress intensity factors of cracked aluminum plates under the mixed mode of $K_I$ and $K_{II}$ in glass-epoxy fiber reinforced composites. For the stress intensity factors, two different models are reviewed such as VCCT and two-step extension method. The p-convergent partial layerwise model is adopted to determine the fracture parameters in terms of energy release rates and stress intensity factors. The p-convergent approach is based on the concept of subparametric element. In assumed displacement field, strain-displacement relations and 3-D constitutive equations of a layer are obtained by combination of 2-D and 1-D higher-order shape functions. In the elements, Lobatto shape functions and Gauss-Lobatto technique are employed to interpolate displacement fields and to implement numerical quadrature. Using the models and techniques considered, effects of composite laminate configuration according to inclined angles and adhesive properties on the performance of bonded composite patch are investigated. In addition to these, the out-of-plane bending effect has been investigated across the thickness of patch repaired laminate plates due to the change of neutral axis. The present model provides accuracy and simplicity in terms of stress intensity factors, stress distribution, number of degrees of freedom, and energy release rates as compared with previous works in literatures.

Micro-mechanical Failure Prediction and Verification for Fiber Reinforced Composite Materials by Multi-scale Modeling Method (멀티스케일 모델링 기법을 이용한 섬유강화 복합재료의 미시역학적 파손예측 및 검증)

  • Kim, Myung-Jun;Park, Sung-Ho;Park, Jung-Sun;Lee, Woo-Il;Kim, Min-Sung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.1
    • /
    • pp.17-24
    • /
    • 2013
  • In this paper, a micro-mechanical failure prediction program is developed based on SIFT (Strain Invariant Failure Theory) by using the multi-scale modeling method for fiber-reinforced composite materials. And the failure analysis are performed for open-hole composite laminate specimen in order to verify the developed program. First of all, the critical strain invariants are obtained through the tensile tests for three types of specimens. Also, the matrices of strain amplification factors are determined through the finite element analysis for micro-mechanical model, RVE (Representative Volume Element). Finally, the microscopic failure analysis is performed for the open-hole composite laminate specimen model by applying a failure load obtained from tensile test, and the predicted failure indices are evaluated for verification of the developed program.

Stress Analysis of Composite Plate with an Elliptical Hole or a Crack Using Complex Potentials (복소퍼텐셜을 이용한 타원공 또는 균열을 가진 복합재 평판 응력해석)

  • Kwon, Jung-Ho;Hwang, Kyung-Jung
    • Composites Research
    • /
    • v.20 no.5
    • /
    • pp.56-63
    • /
    • 2007
  • An approach using complex potentials is presented for analysis of composite plate with an elliptical hole or a rectilinear crack. Composite structure is susceptible to encounter impact damages, which lead to considerable decrease in its residual strength. Such impact damages could be modeled as an equivalent elliptical hole or notch-like crack. Even though finite element method is widely used to analyze stresses or fracture mechanics parameters around such damage, it is tedious to make successive FE-modeling for damage tolerance assessment under fatigue loadings. In this point of view, the solutions based on complex potentials are very simple and easy to use. The computed results are also compared and discussed with those from FEA.

Behavior of Steel Box Girder Bridge According to the Placing Sequences of Concrete Slab (I) (강합성 상자형 교량의 바닥판 타설에 따른 거동 연구(I) - 해석모델 및 현장실험 -)

  • Kwak, Hyo Gyoung;Seo, Young Jae;Jung, Chan Mook;Park, Young Ha
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.2 s.45
    • /
    • pp.123-131
    • /
    • 2000
  • In this study, both experimental and analytical study for behavior of the existing composite steel box girder bridges, constructed along with the procedure of continuous placing slab, are conducted to establish the validity of the proposed model. The layer approach is adopted to determine the equilibrium condition in a section to consider the different material properties and concrete cracking across the sectional depth, and the beam element stiffness is constructed on the basis of the assumed displacement field formulation and the 3-points Gaussian Integration. In addition, the effects of creep and shrinkage of concrete for time-dependent behavior of the bridge are taken into consideration. Finally, both analytical and experimental results are compared.

  • PDF

The Experimental Study on the Absorbed Energy of Carbon/Epoxy Composite Laminated Panel Subjected to High-velocity Impact (고속 충격을 받는 Carbon/Epoxy 복합재 적층판의 흡수 에너지 예측에 대한 실험적 고찰)

  • Cho, Hyun-Jun;Kim, In-Gul;Lee, Seokje;Woo, Kyeongsik;Kim, Jong-Heon
    • Composites Research
    • /
    • v.26 no.3
    • /
    • pp.175-181
    • /
    • 2013
  • The evaluation and prediction for the absorbed energy, residual velocity, and impact damage are the key things to characterize the impact behavior of composite laminated panel subjected to high-velocity impact. In this paper, the method to predict the residual velocity and the absorbed energy of Carbon/Epoxy laminated panel subjected to high velocity impact are proposed and examined by using quasi-static perforation test and high-velocity impact test. Total absorbed energy of specimen due to the high-velocity impact can be grouped with static energy and kinetic energy. The static energy are consisted of energy due to the failure of the fiber and matrix and static elastic energy, which are related to the quasi-static perforation energy. The kinetic energy are consisted of kinetic energy of moving part of specimen, which are modelled by three modified kinetic model. The high-velocity impact test were conducted by using air gun impact facility and compared with the predicted values. The damage area of specimen were examined by C-scan image. In the high initial impact velocity above the ballistic limit, both the static energy and the kinetic energy are known to be the major contribution of the total absorbed energy.

Numerical Analysis and Experimental Measurement of Hygroscopic Warping Effects for Cellulose Fibres (셀룰로스 복합소재에서의 수분에 의한 뒤틀림 변형효과를 위한 수치해석적 실험적 연구)

  • Kim, Byeong-Sam;Kim, Ki-Jun
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.1
    • /
    • pp.117-123
    • /
    • 2004
  • The prediction to the hydroscopic moisture warping behaviors is analyzed for cellulose-based laminates using a numerical method base on a modified classical laminate(MCL) theory for hygroscopic moisture deformations with cycling testing data. The experimental measurement of the interferometric hygroscopic warping effects, moisture generator, and curvature of cellulose reinforced epoxy laminates is studied under cyclic environmental conditions using a Moire interferometer coupled. Accurate determination of curvatures provides a description of dimensional stability evolution; the tools for validation of computational internal stress and for the warpage prediction in model safety.

Bending Analysis of Anisotropic Sandwich Plates with Multi-layered Laminated Composite faces (다적층 복합면재를 갖는 비등방성 샌드위치판의 휨해석)

  • Ji, Hyo-Seon
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.3 no.4
    • /
    • pp.17-26
    • /
    • 2012
  • This study presents a governing equations of bending behavior of anisotropic sandwich plates with multi-layered laminated composite faces. Based on zig-zag models for through thickness deformations, the shear deformation of composite faces is included. All edges of plate are assumed to be simply supported. Results of the bending analysis under lateral loads are presented for the influence of various lay up sequences of antisymmetric angle-ply laminated faces. The accuracy of the approach is ascertained by comparing solutions from the sandwich plates theory with composite faces to the laminated plates theory. Since the present analysis considers the bending stiffness of the core and also the transverse shear deformations of the laminated faces, the proposed method showed higher than that calculated according to the general laminated plates theory. The information presented might be useful to design sandwich plates structure with polymer matrix composite faces.

Free Vibration Analysis based on HSDT of Laminated Composite Plate Structures Using Multi-scale Approach (멀티 스케일 접근 방법에 의한 복합소재 적층 판구조의 HSDT 기반 고유진동 해석)

  • Lee, Sang-Youl
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.1
    • /
    • pp.61-71
    • /
    • 2014
  • This study carried out finite element vibration analysis of composite plate structures for construction using multi-scale approaches, which is based on the higher-order theory. The finite element (FE) models for composite structures using multi-scale approaches described in this paper is attractive not only because it shows excellent accuracy in analysis but also it shows the effect of the material combination. The FE model is used for studying free vibrations of laminated composite plates for various fiber-volume fractions. In particular, new results reported in this paper are focused on the significant effects of the fiber-volume fraction for various parameters, such as fiber angles, layup sequences, and length-thickness ratios. It may be concluded from this study that the combination effect of fiber and matrix, largely governing the dynamic characteristics of composite structures, should not be neglected and thus the optimal combination could be used to design such civil structures for better dynamic performance.