• Title/Summary/Keyword: 적층판

Search Result 677, Processing Time 0.033 seconds

Prediction and Analysis of Fracture Strength for Surface Flawed Laminates (표면 손상을 입은 적층판의 강도 예측 및 분석)

  • 최덕현;황운봉
    • Composites Research
    • /
    • v.16 no.5
    • /
    • pp.15-20
    • /
    • 2003
  • In this paper, the fracture strength of the surface damaged laminates was predicted by applying the fracture strengths of the unflawed and flawed laminates. For prediction, the theoretical equation about the fracture strength of laminates was simplified applying classical laminate theory and was applied to the surface damaged laminates. Lagace's and Tsai's experimental data were used for verifying the theoretical equation. Moreover, to verify the theoretical prediction, an experiment was performed. Surface unflawed laminate and flawed laminates were fabricated and the experiments were made and these results were compared with theoretical predictions. The specimens' fiber direction was same to the tensile direction and the theoretical predictions and the experimental results were showed good agreement. Therefore, by this equation, the fracture strength of structures made of composites will be able to be predicted when the surface of the structures was damaged.

Finite Element Analysis of Large Deformation of Fiber Metal Laminates Under Bending for Stress-Strain Prediction (굽힘하중을 받는 섬유 금속 적층판의 응력-변형률 예측을 위한 대변형 유한요소해석)

  • Yeom, Kyung Mi;Lee, Jongsoo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.10
    • /
    • pp.963-970
    • /
    • 2015
  • Laminate structures are used in the automobile, aerospace, and display industries. The advantages of fiber metal laminates are well known. Fiber metal laminates are useful for reducing the weight and improving impact resistance . However, currently, the mechanical properties of fiber metal laminates are not derived. In this paper, we use thickness as a factor for comparing the properties of laminates of various thickness combinations. The properties fiber metal laminates are analyzed using design of experiments. In addition, the finite element method is used to analyze elastic and plastic strains of fiber metal laminates and aluminum plates. The final goal of this paper is to find a suitable finite element model of fiber metal laminates under bending.

Stacking method of thick composite laminates considering interlaminar normal stresses (층간수직응력을 고려한 두꺼운 복합적층판의 적층방법)

  • 김동민;홍창선
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.5
    • /
    • pp.944-951
    • /
    • 1988
  • Global-Local Laminate Variational Model is utilized to investigate the characteristics of interlaminar stresses in thick composite laminates under uniform axial extension. Various laminates with different fiber orientation and stacking sequences are analyzed to observe the behavior of interlaminar normal stresses. From this result, the interlaminar normal stress distribution along the laminate interfaces is examined and discussed with an existing approximation model. The repeated stacking of Poisson's ratio symmetric sublaminates is found to be the best stacking method of thick composite laminates to reduce the interlaminar normal stresses for the prevention of the free-edge delamination.

Optimization of Microwave Absorbing Performance in Polymer Matrix Composite Laminate (고분자 기기 복합재료 적층판의 전자파 흡수 최적화)

  • 김진봉;김태욱
    • Composites Research
    • /
    • v.14 no.6
    • /
    • pp.38-46
    • /
    • 2001
  • In this study, An optimization code that can design microwave absorbing composite laminates is developed, and 3-layered microwave absorbing composite laminates are developed by optimizing the thickness of each layer. The layers are 3 different composite laminates. Many variables including lay-up angles of electromagnetically orthotropic composite layer can be considered in this code. The developed laminate is composed of an impedance matching layer of glass/epoxy fabric laminate, a glass/epoxy fabric laminate layer containing aluminum filler and carbon/epoxy fabric laminate layer. Permittivities of the materials are obtained using a network analyzer and a coaxial air line.

  • PDF

Strain Energy Characterics of Antisymmetric Angle-Ply Laminated Plates (역대칭 Angle-Ply 적층판의 변형에너지 특성에 관한 연구)

  • Park, Sung Jin
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.6
    • /
    • pp.691-700
    • /
    • 2000
  • A powerful analytical procedure and strain energy analysis to investigate the free vibration of antisymmetric angle-ply laminated plates, having one pair of opposite edges simply supported, are develped on the basis of the Yang, Norris and Stavsky (YSN) theory. The equation of motion of the plate are solved by the use of collocation method. A range of results are presented for plates to show the effects of modulus ratio and number of layers on natural frequency. In addition, an analysis of the strain energy distributions is used as an aid for the better understanding of the vibration characteristics of the plates.

  • PDF

Buckling Strength Analysis of Stiffened Composite Plates for the Optimum Laminate Structure (최적 적층구조를 위한 보강된 복합적층판의 좌굴강도 해석)

  • H.R.,Kim;J.W.,Lee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.26 no.3
    • /
    • pp.21-28
    • /
    • 1989
  • The optimun laminated composition of the stiffened composite plates is studied from the view point of buckling strength. The finite element method is applied to the buckling analysis of the composite plates taking into account the effect of shear deformation through the plate thickness. The stiffened plate model is discretized using plate thickness and symmetrically stacked. Parametric study is carried out for the selection of the optimum laminate structure; optimum fiber angle sequence through the thickness. Laminate structure of $[-45^{\circ}/45^{\circ}/90^{\circ}/0^{\circ}]$, is found to give the best buckling strength. For the case of that layer number is more than eight, best result is obtained when layers of the same fiber angle are put together, leaving the laminate has the same fiber angle sequence as a whole.

  • PDF

Three Dimensional Stress Analysis of Composite Laminates using Stress Functions and Interface Modeling (응력함수와 층간면 모델링을 이용한 복합재 적층판의 3차원 응력해석)

  • Kim, H.S.;Kim, J.Y.;Kim, J.G.
    • Journal of Power System Engineering
    • /
    • v.13 no.4
    • /
    • pp.49-55
    • /
    • 2009
  • 복합재 적층판의 자유단 근처에서 나타나는 층간 응력의 집중 현상을 층간면 효과를 고려해 해석하였다. 복합재 적층판 내부의 임의의 위치에서 3차원 평형방정식을 만족시키기 위해 렉니츠키 응력함수를 도입하였으며, 가상일의 원리를 이용하여 지배방정식을 유도하였다. 주어진 응력함수를 이용하여 구한 3차원 응력들은 복합재 적층판의 아래 위 면뿐만 아니라 자유단에서 하중자유조건을 잘 만족한다. 기하학적 불연속성 때문에 복합재 적층판의 자유단에서는 응력의 특이가 발생하지만, 층간면 효과를 고려하게 되면 층간응력의 집중현상을 정확하게 해석할 수 있다. 자유단에서 발생한 층간응력의 크기를 보면, 층간면 효과를 고려할 경우, 응력특이 효과가 많이 줄어드는 것을 관찰할 수 있다. 본 연구에서 주어진 층간면에서의 정확한 응력 해석은 복합재 적층판의 강도설계를 수행하는 초기 설계 툴로 사용할 수 있다.

  • PDF

A Method to Predict the Open-Hole Tensile Strength of Composite Laminate (원공을 가지는 복합재 적층판의 인장강도 예측 기법)

  • Lee, Heun-Ju;Shin, In-Soo;Jeong, Mun-Gyu;Kweon, Jin-Hwe;Choi, Jin-Ho
    • Composites Research
    • /
    • v.24 no.4
    • /
    • pp.29-35
    • /
    • 2011
  • The characteristic length method used to determine a laminate's strength generally requires the test for un-notched and notched laminates and finite element analysis together. In this paper, the methods used to predict the stress distribution and tensile characteristic length of open-hole laminates using the stress concentration factor and equivalent material properties are proposed. These methods do not require data on the failure load of open-hole laminates or finite element analysis. Once the stress and characteristic length have been determined, the failure load of the open-hole laminate can be calculated. The proposed method considers the effect of the material properties as a parameter and therefore can be applied to a variety of materials. The stress distribution is verified by comparing with a finite element analysis and test results. The predicted failure load shows a maximum deviation of 8% from the test results.

Fatigue Damage of Quasi-Isotropic Composite Laminates (의사등방성 복합재 적층판의 피로손상)

  • 김인권
    • Composites Research
    • /
    • v.12 no.4
    • /
    • pp.8-16
    • /
    • 1999
  • In this study, when the applied directions of tensile loading is changed fatigue damage of quasi-isotropic composite laminates was discussed. Low cycle fatigue tests of $[0/-60/+60]_s$ laminates and $[+30/-30/90]_s$ laminates were carried out. Material systems used were AS4/Epoxy and AS4/PEEK. The fatigue damage of $[+30/-30/90]_s$ laminates differed from that of $[0/-60/+60]_s$ laminates. The position of delamination generated at AS4/Epoxy and AS4/PEEK $[+30/-30/90]_s$ laminates appeared differently according to the kind of matrix. Critical values of strain energy release rate were obtained by using the strain measured at the initiation of delamination. The experimental results agreed well with the results obtained by the proposed method for determining strain energy release rate.

  • PDF

The study on structural performance of fiber metal laminates (섬유금속 적층판의 구조적 성능 연구)

  • Kim, Sung Joon;Kim, Tae-Uk;Kim, Seungho
    • Aerospace Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.20-26
    • /
    • 2014
  • In this paper, yield stress, tangent modulus and failure strain were varied to ascertain the influence of impact response such as impact force histories and residual energy. And the buckling behavior of FML(Fiber Metal Laminates) were analyzed using numerical method. A number of analyses on FML and aluminum panel were conducted for shear and compression loading to compare the capability of stability. And to evaluate the static performance, static analysis has performed for box beam structure. Low-velocity impact analysis has performed on FML made of aluminum 2024 sheet and glass/epoxy prepreg layers. And the buckling and static performance of FML have been compared to aluminum using the analysis results. For the comparison of structural performance, similar analyses have been carried out on monolithic aluminum 2024 sheets of equivalent weight.