• Title/Summary/Keyword: 적층충전

Search Result 54, Processing Time 0.032 seconds

A STUDY OF POLYMERIZATION SHRINKAGE OF COMPOSITE RESIN ACCORDING TO FILLING METHODS USING STRAIN GAUGE (스트레인 게이지를 이용한 적층방법에 따른 복합레진의 중합수축에 관한 연구)

  • Kim, Eung-Hag;Kim, Jong-Soo;Yoo, Seung-Hoon
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.35 no.1
    • /
    • pp.18-29
    • /
    • 2008
  • The purpose of this study was to compare the polymerization shrinkage of several filling methods using strain gauges. In this study, a light-emitting diode(LED) curing unit(Elipar Freeligh2, 3M EPSE, USA) and plasma arc lamp(PAL) curing unit(Flipo, LOKKI, France) were used for curing, Filtek $Z350^{TM}$(3M EPSE, USA) composite resin was used for the cavity filling. Sixty permanent bicuspid teeth, that were extracted for orthodontic treatment, were studied. The cavities were prepared on the occlusal surface and were filled using the following methods : 1) bulk filling, 2) parallel filling, 3) oblique filling The strain was recorded on the buccal, lingual, mesial and distal surfaces and the strain values were computed into stress values. The shear bond strength of each filling method was tested using a Micro Universal Testing machine. The results can be summarized as follows: 1. In the strain changes, all LED and PAL curing groups showed an increase on the buccal surface and a slow decrease as time elapsed. 2. In the strain changes of the mesial and distal surfaces, the decreases and increases were shown repeatedly and reduced as time elapsed. 3. There were no significant statistical strain changes among filling methods in the LED or PAL curing groups. 4. There were significant statistical strain changes between the LED and PAL curing groups on the buccal surface(p<0.05). 5. From the shear bond strength results, in the LED curing group, filling method 3 showed lower surface stress than filling method 1 and 2(p<0.05). In the PAL curing group, there were no significant statistical strain changes between each filling method. 6. The surface stress of each group was lower than the shear bond strength.

  • PDF

Adsorption Properties of Nickel ion from Plating Rinse Water Using Hybrid Sulfonated Bead and Fibrous Ion Exchanger (설폰산형 비드와 섬유 혼성체를 이용한 도금수세수 중의 니켈 흡착 특성)

  • 황택성;조상연
    • Polymer(Korea)
    • /
    • v.27 no.1
    • /
    • pp.61-68
    • /
    • 2003
  • In this study, we have investigated the preparation of mixed bead and fiber type hybrid ion-exchanger for recovering nickel ion from plating rinse water. There was little dependence of adsorption capacity for nickel ion on the mixing ratio of resin type and fiber type of ion exchangers. However, it increased with increasing the resin content in the mixed bed. It was shown that the data Langmuir and Freundlich's adsorption isotherm model were well fitted to the linear. Affinity between the functional groups in the ion exchanger and nickel ion in the process was confirmed. The pressure drop decreased with increasing the number of stage in the multistage bed, but it increased with increasing the resin content in the mixing bed. The initial breakthrough time in the multistage bed was short due to the increase of number of stage in the continuous process. It was found that the final breakthrough time of the multistage bed was little changed. The breakthrough time decreased with increasing the amount of fibrous ion exchanger in the mixed bed. The maximum adsorption capacities of the mixed and multistage beds were 2.51 meq/g and 2.69 meq/g, respectively. The desorption time for the nickel ion with $1N H_2SO_4$ solution was lower than 10 minutes and the yield of desorption was greater than 98 percent.

Experimental Analysis of Large Size Concrete-Filled Glass Fiber Reinforced Composite Piles Subjected to the Flexural Compression (대구경 콘크리트 충전 복합소재 파일의 휨-압축 거동에 대한 실험적 분석)

  • Lee, Sung Woo;Choi, Sokhwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5A
    • /
    • pp.519-529
    • /
    • 2009
  • Fiber reinforced composite materials have various advantages in mechanical and chemical aspects. Not only high fatigue and chemical resistance, but also high specific strength and stiffness are attained, and therefore, damping characteristics are beneficial to marine piles. Since piles used for marine structures are subjected to compression and bending as well, detailed research is necessary. Current study examine the mechanical behavior under flexural and/or compressive loads using concrete filled fiber reinforced plastic composite piles, which include large size diameter. 25 pile specimens which have various size of diameters and lengths were fabricated using hand lay-up or filament winding method to see the effect of fabrication method. The inner diameters of test specimens ranged from 165 mm to 600 mm, and the lengths of test specimens ranged from 1,350 mm to 8,000 mm. The strengths of the fill-in concrete were 27 and 40 MPa. Fiber volumes used in circumferential and axial directions are varied in order to see the difference. For some tubes, spiral inner grooves were fabricated to reduce shear deformation between concrete and tube. It was observed that the piles made using filament winding method showed higher flexural stiffness than those made using hand lay-up. The flexural stiffness of piles decreases from the early loading stage, and this phenomenon does not disappear even when the inner spiral grooves were introduced. It means that the relative shear deformation between the concrete and tube wasn't able to be removed.

Stress-strain Relations of Concrete Confined with Tubes Having Varying GFRP Layers (수적층 및 필라멘트 와인딩을 이용한 GFRP튜브로 구속된 콘크리트의 압축 거동)

  • Lee, Sung Woo;Choi, Sokhwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6A
    • /
    • pp.861-872
    • /
    • 2008
  • Concrete-filled glass fiber reinforced polymer tubes are often used for marine structures with the benefit of good durability and high resistance against corrosion under severe chemical environment. Current research presents results of a comprehensive experimental investigation on the behavior of axially loaded circular concrete-filled glass fiber reinforced polymer tubes. This paper is intended to examine several aspects related to the usage of glass fiber fabrics and filament wound layers used for outer shell of piles subjected to axial compression. The objectives of the study are as follows: (1) to evaluate the effectiveness of filament winding angle of glass fiber layers (2) to evaluate the effect of number of GFRP layers on the ultimate load and ductility of confined concrete (3) to evaluate the effect of loading condition of specimens on the effectiveness of confinement and failure characteristics as well, and (4) to propose a analytical model which describes the stress-strain behavior of the confined concrete. Three different types of glass fiber layers were chosen; fabric layer, ${\pm}45^{\circ}$ filament winding layer, and ${\pm}85^{\circ}$ filament winding layer. They were put together or used independently in the fabrication of tubes. Specimens that have various L:D ratios and different diameters have also been tested. Totally 27 GFRP tube specimens to investigate the tension capacity, and 66 concrete-filled GFRP tube specimens for compression test were prepared and tested. The behavior of the specimens in the axial and transverse directions, failure types were investigated. Analytical model and parameters were suggested to describe the stress-strain behavior of concrete under confinement.

The Effect of Functional Group of Levelers on Through-Silicon-Via filling Performance in Copper Electroplating (구리 전해도금을 이용한 실리콘 관통전극 충전 성능에 대한 평탄제 작용기의 영향)

  • Jin, Sang-Hun;Kim, Seong-Min;Jo, Yu-Geun;Lee, Un-Yeong;Lee, Min-Hyeong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.80-80
    • /
    • 2018
  • 실리콘 관통전극 (Through Silicon Via, TSV)는 메모리 칩을 적층하여 고밀도의 집적회로를 구현하는 기술로, 기존의 와이어 본딩 (Wire bonding) 기술보다 낮은 소비전력과 빠른 속도가 특징인 3차원 집적기술 중 하나이다. TSV는 일반적으로 도금 공정을 통하여 충전되는데, 고종횡비의 TSV에 결함 없이 구리를 충전하기 위해서 3종의 유기첨가제(억제제, 가속제, 평탄제)가 도금액에 첨가되어야 한다. 이러한 첨가제 중 결함 발생유무에 가장 큰 영향을 주는 첨가제는 평탄제이기 때문에, 본 연구에서는 이미다졸(imidazole) 계열, 이민(imine) 계열, 디아조늄(diazonium) 계열 및 피롤리돈(pyrrolidone) 계열과 같은 평탄제(leveler)의 작용기에 따라 TSV 충전 성능을 조사하였다. TSV 충전 시 관능기의 거동을 규명하기 위해 QCM (quartz crystal microbalance) 및 EQCM (electrochemical QCM)을 사용하여 흡착 정도를 측정하였다. 실험 결과, 디아조늄 계열의 평탄제는 TSV를 결함 없이 충전하였지만 다른 작용기를 갖는 평탄제는 TSV 내 결함이 발생하였다. QCM 분석에서 디아조늄 계열의 평탄제는 낮은 흡착률을 보이지만 EQCM 분석에서는 높은 흡착률을 나타내었다. 즉, 디아조늄 계열의 평탄제는 전기 도금 동안 전류밀도가 집중되는 TSV의 상부 모서리에서 국부적인 흡착을 선호하며 이로 인하여 무결함 충전이 달성된다고 추론할 수 있다.

  • PDF

A Case Study on Design of Slope Failure in Expressway (고속도로 붕괴 절토 비탈면의 설계사례)

  • Yu, Byeong-Ok;Jang, Hyeon-Ik;Sim, Jae-Won;Han, Won-Jun;Na, Gwang-Hui
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.713-727
    • /
    • 2009
  • 절토비탈면의 붕괴는 주로 지질구조 적으로 취약한 구간에서 강우, 지진, 발파진동, 굴착 등의 외적인 요인이 작용하였을 때 비탈면의 붕괴가 수반되는 경우가 많으며 내적인 요인으로 작용하는 지질구조는 구조선의 종류에 따라 붕괴규모나 붕괴양상에서 상당한 차이를 보이는 특성을 보인다. 특히, 비탈면 붕괴는 단층이나 점토가 충전된 구조선에서 문제가 많이 발생되고 방향성이 뚜렷한 엽리 및 절리에서 붕괴가 빈번한 실정이다. 단층은 일반적으로 모든 암종에서 나타나는 지질구조이나 특히, 변성암중 편마암에서 붕괴빈도가 빈번하게 발생되고 점토층이 수반되는 경우에 심하다. 본 논문은 공사당시 비교적 규모가 크게 붕괴가 발생된 붕적층 절토 비탈면과 단층파쇄대 및 암질불량의 비탈면의 붕괴사례의 안정검토 사례를 소개하고자 한다.

  • PDF

Effects on Changes of the Speed of Sound and the Broadband Ultrasound Attenuation on the Medium's Infilling in Additive Manufacturing Method of 3D Printing (3차원 프린팅 적층가공 방식에서 매질 내부 충전이 초음파 속도와 감쇠에 미치는 영향)

  • Seoung, Youl-Hun
    • Journal of radiological science and technology
    • /
    • v.41 no.1
    • /
    • pp.53-60
    • /
    • 2018
  • The purpose of this study was investigating the effect of 3D printing technology that changes the speed of sound (SOS) and the broadband ultrasound attenuation (BUA) by controlling the density of the media phantom. We used 3D printers which called additive manufacturing (AM) by using material with polylactic acid (PLA). The inside of the medium phantom was filled crossly with 100%, 90%, 80%, 70%, 60%, and 50% of the material. The ultrasonic instrument measured the SOS and the BUA using a 0.55 MHz ultrasound output in opposing mode with a pair of transducers. As a result, the density of the medium phantoms with the SOS showed very high correlation (r = 0.944), but the SOS showed very low correlation (r = 0.500). It is expecting that the manufacturing and measurement method of the medium phantom using 3D printing technology will be used as basic data for ultrasonic bone mineral density.

Study for increasing property of piezoelectric energy harvester using multi-layer ceramic (적층형 압전세라믹을 이용한 에너지 하베스터의 특성 향상)

  • Kim, Hyung-Chan;Song, Hyun-Cheol;Kang, Chong-Yon;Kang, Jin-Kyu;Ju, Byeong-Kwon;Yoon, Seok-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.51-51
    • /
    • 2008
  • 최근 센서, 전자기술의 발달은 소형 센서 기기의 구동에 필요한 파워를 줄여 주변의 진동이나 온도차등에서의 작은 에너지로도 센서 등의 소형 전자기기의 구동을 가능하게 했다. 이에 따라 전자기기의 구동에너지로써 에너지 하베스팅이 많은 관심을 받고 있다. 압전 효과를 이용하여 주변의 진동에너지를 전기에너지로 변화 시키는 압전에너지 하베스터는 온도차이나 태양광, 바람등과는 달리 날씨나 구동조건에 큰 영항을 받지 않는 장점과 그 크기가 비교적 소형이라는 장점이 있어 많은 연구가 진행되고 있다. 에너지 하베스터에서 생산된 에너지를 사용하기 위해서는 생산된 에너지를 저장장치에 저장해야 한다. 저장장치에 저장하기 위해서는 일정 이상의 전압과 많은 양의 전류가 있는 것이 효과적이다. 하지만 압전 세라믹의 출력 특성은 전압이 크고, 출력 전류가 작은 특성을 지지고 있어 충전 속도가 느리다는 문제점이 있다. 압전세라믹에서 발생되는 에너지는 세라믹의 두께와 세라믹의 전극면적에 비례하는데 각각 세라믹의 두께는 출력 전압에 영향을 주며, 세라믹의 전극면적은 발생하는 전하량에 영항을 준다. 이러한 압전체의 특징을 이용하여 본 연구에서는 압전체의 출력특성의 향상을 위하여 $10\times35mm^2$ 크기의 적층 세라믹을 제작하여 압전에너지 하베스터를 제작하였다. 적층 압전세라믹을 이용한 에너지 하베스터에서 3.5m/$s^2$ 24.6 ${\mu}m$의 진동에서 발생전압 2.14 V 에 발생전류 252 ${\mu}A$의 특성을 얻을 수 있었다.

  • PDF

Comparison of Surface Characteristics According to 3D Printing Methods and Materials for the Fabrication of Microfluidic Systems (미세유체시스템 제작을 위한 3D 프린팅 방식 및 소재 별 표면특성 비교)

  • Bae, Seo Jun;Im, Do Jin
    • Korean Chemical Engineering Research
    • /
    • v.57 no.5
    • /
    • pp.706-713
    • /
    • 2019
  • In this study, basic research was conducted to provide guidelines for selecting printers and materials suitable for each application case by analyzing 3D printing method and surface characteristics of materials suitable for microfluidic system. We have studied the surface characteristics according to the materials for the two typical printing methods: The most commonly used method of Fused Deposition Modeling (FDM) printing and the relatively high resolution method of Stereolithography (SLA) printing. The FDM prints exhibited hydrophilic properties before post - treatment, regardless of the material, but showed hydrophobic properties after post - treatment with acetone vapor. It was confirmed by the observation of surface roughness using SEM that the change of the contact angle was due to the removal of the surface structure by post-treatment. SLA prints exhibited hydrophilic properties compared to FDM prints, but they were experimentally confirmed to be capable of surface modification using hydrophobic coatings. It was confirmed that it is impossible to make a transparent specimen in the FDM method. However, sufficient transparency is secured in the case of the SLA method. It is also confirmed that the electroporation chip of the digital electroporation system based on the droplet contact charging phenomenon was fabricated by the SLA method and the direct application to the microfluidic system by demonstrating the electroporation successfully.