A STUDY OF POLYMERIZATION SHRINKAGE OF COMPOSITE RESIN ACCORDING TO FILLING METHODS USING STRAIN GAUGE

스트레인 게이지를 이용한 적층방법에 따른 복합레진의 중합수축에 관한 연구

  • Kim, Eung-Hag (Department of Pediatric Dentistry, School of Dentistry, Dankook University) ;
  • Kim, Jong-Soo (Department of Pediatric Dentistry, School of Dentistry, Dankook University) ;
  • Yoo, Seung-Hoon (Department of Pediatric Dentistry, School of Dentistry, Dankook University)
  • 김응학 (단국대학교 치과대학 소아치과학교실) ;
  • 김종수 (단국대학교 치과대학 소아치과학교실) ;
  • 유승훈 (단국대학교 치과대학 소아치과학교실)
  • Published : 2008.02.29

Abstract

The purpose of this study was to compare the polymerization shrinkage of several filling methods using strain gauges. In this study, a light-emitting diode(LED) curing unit(Elipar Freeligh2, 3M EPSE, USA) and plasma arc lamp(PAL) curing unit(Flipo, LOKKI, France) were used for curing, Filtek $Z350^{TM}$(3M EPSE, USA) composite resin was used for the cavity filling. Sixty permanent bicuspid teeth, that were extracted for orthodontic treatment, were studied. The cavities were prepared on the occlusal surface and were filled using the following methods : 1) bulk filling, 2) parallel filling, 3) oblique filling The strain was recorded on the buccal, lingual, mesial and distal surfaces and the strain values were computed into stress values. The shear bond strength of each filling method was tested using a Micro Universal Testing machine. The results can be summarized as follows: 1. In the strain changes, all LED and PAL curing groups showed an increase on the buccal surface and a slow decrease as time elapsed. 2. In the strain changes of the mesial and distal surfaces, the decreases and increases were shown repeatedly and reduced as time elapsed. 3. There were no significant statistical strain changes among filling methods in the LED or PAL curing groups. 4. There were significant statistical strain changes between the LED and PAL curing groups on the buccal surface(p<0.05). 5. From the shear bond strength results, in the LED curing group, filling method 3 showed lower surface stress than filling method 1 and 2(p<0.05). In the PAL curing group, there were no significant statistical strain changes between each filling method. 6. The surface stress of each group was lower than the shear bond strength.

본 연구는 복합레진 적층방법에 따른 복합레진의 수축양상을 스트레인 게이지를 이용하여 비교 평가하고자 하였다. 사용된 광중합기의 광원은 light-emitting diode(LED)와 plasma arc lamp(PAL)이었으며, 복합레진은 Filtek $Z350^{TM}$를 사용하였다. 교정 치료를 목적으로 발거된 60개의 소구치를 대상으로 하여, 교합면에 와동을 형성하고 일회충전법, 수평적층법, 사면적층법으로 나누어 복합레진을 충전하여 치면에 발생된 strain과 응력을 측정하였고, 법랑질 표면에 시편을 부착하여 동일한 적층방법으로 충전한 후 전단결합강도를 측정한 결과 다음과 같은 결론을 얻었다. 1. Strain의 변화를 살펴보면, LED와 PAL 조사군 모두 와동의 협설면에서는 주로 팽창이 일어났다가 시간이 지남에 따라 서서히 수축하는 양상을 보여주었다. 2. 와동의 근원심면에서는 팽창과 수축이 반복적으로 나타나면서 서서히 수축량이 증가하였다. 3. LED와 PAL 조사군 모두 적층방법 간의 응력 차이는 없었다(p>0.05). 4. LED 및 PAL 조사군 간의 응력 차이는 협면에서만 존재하였다(p<0.05). 5. 전단결합강도 측정 결과 LED 군에서는 사면적층법이 일회충전법, 수평적층법 보다 유의하게 낮게 나타났으나(p<0.05), PAL 광조사군에서는 유의차가 없었다(p>0.05). 6. 각 치면에 발생된 응력은 전단결합강도보다 낮았다(p<0.05).

Keywords

References

  1. Deliperi S, Bardwell DN : An alternative method to reduce polymerization shrinkage in direct posterior composite restorations. J Am Dent Assoc, 133:1387- 1398, 2002.
  2. Eick JD, Welch FH : Polymerization shrinkage of posterior composite resins and its possible influence on postoperative sensitivity. Quintessence International, 17:103-111, 1986.
  3. Feilzer AJ, de Gee AJ, Davidson CL : Curing contraction of composites and glass-ionomer cements. Journal of Prosthetic Dentistry, 59:297-300, 1988. https://doi.org/10.1016/0022-3913(88)90176-X
  4. Davidson CL, Feilzer AJ : Polymerization shrinkage and polymerization shrinkage stress in polymerbased restoratives. J Dent, 25:435-440, 1997. https://doi.org/10.1016/S0300-5712(96)00063-2
  5. Suliman AH, Boyer DB, Lakes RS : Polymerization shrinkage of composite resins : comparison with tooth deformation. J Prosthet Dent, 71:7-12, 1994. https://doi.org/10.1016/0022-3913(94)90247-X
  6. Donly KJ, Dowell A, Anixiadas C, et al. : Relationship among visible light source, composite resin polymerization shrinkage, and hygroscopic expansion. Quintessence Int, 21:883-886, 1990.
  7. de Gee AF, Feilzer AJ, Davidson CL : True linear polymerization shrinkage of unfilled resins and composites determined with a linometer. Dent Mater, 9:11-14, 1993. https://doi.org/10.1016/0109-5641(93)90097-A
  8. Cook WD, Forrest M, Goodwin AA : A simple method for the measurement of polymerization shrinkage in dental composites. Dent Mater, 15:447-449, 1999. https://doi.org/10.1016/S0109-5641(99)00073-1
  9. Davidson CL, de Gee AJ : Relaxation of polymerization contraction stresses by flow in dental composites. J Dent Res, 63:146-148, 1984. https://doi.org/10.1177/00220345840630021001
  10. Bausch JR, de Lange K, Davidson CL, et al. : Clinical significance of polymerization shrinkage of composite resins. J Prosthet Dent, 48:59-67, 1982. https://doi.org/10.1016/0022-3913(82)90048-8
  11. Kleverlaan CJ, Feilzer AJ : Polymerization shrinkage and contraction stress of dental resin composites. Dent Mater, 21:1150-1157, 2005. https://doi.org/10.1016/j.dental.2005.02.004
  12. 이용근, 윤태호, 김철위 : 치과용 심미수복재의 중합수축 및 열팽창에 관한 연구. 대한치과기재학회지, 27:171-179, 2000.
  13. 이용근, 윤태호, 임범순 등 : 광원 및 광조사 방법에 따른 심미충전재의 중합수축. 대한치과기재학회지, 27:317- 326, 2000.
  14. Fleming GJ, Khan S, Afzal O, et al. : Investigation of polymerisation shrinkage strain, associated cuspal movement and microleakage of MOD cavities restored incrementally with resin-based composite using an LED light curing unit. J Dent, 35:97-103, 2007. https://doi.org/10.1016/j.jdent.2006.05.003
  15. Tolidis K, Nobecourt A, Randall RC : Effect of a resin-modified glass ionomer liner on volumetric polymerization shrinkage of various composites. Dent Mater, 14:417-423, 1998. https://doi.org/10.1016/S0300-5712(99)00016-0
  16. Labella R, Lambrechts P, Van Meerbeek B, et al. : Polymerization shrinkage and elasticity of flowable composites and filled adhesives. Dent Mater, 15:128-137, 1999. https://doi.org/10.1016/S0109-5641(99)00022-6
  17. Hofmann N, Markert T, Hugo B, et al. : Effect of high intensity vs. soft-start halogen irradiation on light-cured resin-based composites. Part I. Temperature rise and polymerization shrinkage. Am J Dent, 16:421-430, 2003.
  18. Hofmann N, Denner W, Hugo B, et al. : The influence of plasma arc vs. halogen standard or soft-start irradiation on polymerization shrinkage kinetics of polymer matrix composites. J Dent, 31:383-393, 2003. https://doi.org/10.1016/S0300-5712(03)00089-7
  19. Knezevic A, Demoli N, Tarle Z, et al. : Measurement of linear polymerization contraction using digital laser interferometry. Oper Dent, 30:346-352, 2005.
  20. Fogleman EA, Kelly MT, Grubbs WT : Laser interferometric method for measuring linear polymerization shrinkage in light cured dental restoratives. Dent Mater, 18:324-330, 2002. https://doi.org/10.1016/S0109-5641(01)00057-4
  21. Calheiros FC, Sadek FT, Braga RR, et al. : Polymerization contraction stress of low-shrinkage composites and its correlation with microleakage in class V restorations. J Dent, 32:407-412, 2004. https://doi.org/10.1016/j.jdent.2004.01.014
  22. Tani Y, Nambu T, Ishikawa A, et al. : Polymerization shrinkage and contraction force of composite resin restorative inserted with" Megafiller". Dent Mater J, 12:182-189, 1993. https://doi.org/10.4012/dmj.12.182
  23. Yap AUJ, Wang HB, Siow KS, et al. : Polymerization shrinkage of visible-light-cured composites. Oper Dent, 25:98-103, 2000.
  24. Sakaguchi RL, Douglas WH : Strain gauge measurement of polymerization shrinkage. J Dent Res, 68:977, 1989.
  25. Sakaguchi RL, Sasik CT, Bunczak MA, et al. : Strain gauge method for measuring polymerization contraction of composite restoratives. J Dent, 19:312- 316, 1991. https://doi.org/10.1016/0300-5712(91)90081-9
  26. Sakaguchi RL, Peters MCRB, Nelson SR, et al. : Effect of polymerization contraction in composite restorations. J Dent, 20:178-182, 1992. https://doi.org/10.1016/0300-5712(92)90133-W
  27. Sakaguchi RL, Ferracane JL : Stress transfer from polymerization shrinkage of a chemical-cured composite bonded to a pre-cast composite substrate. Dent Mater, 14:106-111, 1998. https://doi.org/10.1016/S0109-5641(98)00016-5
  28. 신범철, 윤희중 : 스트레인 게이지(Strain Gauge)의 원리와 응용에 관한 소고. 대한체육대학교 체육과학연구소논문집, 8:1-11, 1989.
  29. 김윤철, 김종수, 권순원 등 : 스트레인 게이지법을 이용한 복합레진과 컴포머의 중합수축 평가에 관한 연구. 대한소아치과학회지, 29:19-29, 2002.
  30. 김영광, 김종수, 유승훈 : 스트레인 게이지를 이용한 수종의 복합레진의 중합수축 및 수축응력의 비교. 대한소아치과학회지, 31:516-526, 2004.
  31. Figueiredo Reis A, Giannini M, Ambrosano GM, et al. : The effects of filling techniques and a low-viscosity composite liner on bond strength to class II cavities. J Dent, 31:59-66, 2003. https://doi.org/10.1016/S0300-5712(02)00122-7
  32. Santos AJ, Sarmento CF, Abuabara A, et al. : Stepcure polymerization: effect of initial light intensity on resin/dentin bond strength in class I cavities. Oper Dent, 31:324-331, 2006. https://doi.org/10.2341/05-37
  33. He Z, Shimada Y, Tagami J : The effects of cavity size and incremental technique on micro-tensile bond strength of resin composite in Class I cavities. Dent Mater, 23:533-538, 2007. https://doi.org/10.1016/j.dental.2006.03.012
  34. Versluis A, Douglas WH, Cross M, et al. : Does an incremental filling technique reduce polymerization shrinkage stresses? J Dent Res, 75:871-878, 1996. https://doi.org/10.1177/00220345960750030301
  35. Koran P, Kurschner R : Effect of sequential versus continuous irradiation of a light-cured resin composite on shrinkage, viscosity, adhesion, and degree of polymerization. Am J Dent, 11:17-22, 1998.
  36. Hirabayashi S, Hood JA, Hirasawa T : The extent of polymerization of Class II light-cured composite resin restorations; effects of incremental placement technique, exposure time and heating for resin inlays. Dent Mater J, 12:159-170, 1993. https://doi.org/10.4012/dmj.12.159
  37. Peutzfeldt A, Sahafi A, Asmussen E : Characterization of resin composites polymerized with plasma arc curing units. Dent Mater, 16:330-336, 2000. https://doi.org/10.1016/S0109-5641(00)00025-7
  38. Brackett WW, Haisch LD, Covey DA : Effect of plasma arc curing on the microleakage of Class V resin-based composite restorations. Am J Dent, 13:121-122, 2000.
  39. Stahl F, Ashworth SH, Jandt KD, et al. : Lightemitting diode (LED) polymerisation of dental composites: flexural properties and polymerisation potential. Biomaterials, 21:1379-1385, 2000. https://doi.org/10.1016/S0142-9612(00)00029-6
  40. Dunn WJ, Bush AC : A comparison of polymerization by light-emitting diode and halogen-based lightcuring units. J Am Dent Assoc, 133:335-341, 2002.
  41. Mahoney E, Holt A, Swain M, et al. : The hardness and modulus of elasticity of primary molar teeth: an ultra-micro-indentation study. J Dent, 28:589-594, 2000. https://doi.org/10.1016/S0300-5712(00)00043-9
  42. Ruyter IE : Conversion in different depths of ultraviolet and visible light activated composite materials. Acta Odontol Scand, 40:179-182, 1982. https://doi.org/10.3109/00016358209012726
  43. Shintani H, Inoue T, Yamaki M: Analysis of camphoroquinone in visible light cured composite resins. Dent Mat, 1:14-126, 1985.
  44. Bowen RL, Nemoto K, Rapson JE : Adhesive bonding of various materials to hard tooth tissue: forces developing in composite materials during hardening. J Am Dent Assoc, 106:475-477, 1983.
  45. Rees JS, Jacobsen PH : The current status of composite materials and adhesive systems. 6: Techniques for indirect placement. Restorative Dent, 7:21-23, 1991.
  46. Venhoven BA, DeGee AJ, Davidson CL : Light initiation of dental resins: dynamics of the polymerization. Biomaterials, 17:2313-2318, 1996. https://doi.org/10.1016/S0142-9612(96)00074-9
  47. Bouschlicher MR, Vargas MA, Boyer DB : Effect of composite type, light intensity, configuration factor and laser polymerization on polymerization contraction forces. American J Dent, 10:88-96, 1997.
  48. Versluis A, Tantbiroin D, Douglas WH : Do dental composites always shrink toward the lights. J Dent Res, 77:1435-1445, 1998. https://doi.org/10.1177/00220345980770060801
  49. Darhishyre PA, Messer LB, Douglas WH : Microleakage in class II composite restorations bonded to dentin using thermal and load cycling. J Dent Res, 67:585-587, 1988. https://doi.org/10.1177/00220345880670031201
  50. Robinson PB, Moore BK, Swartz ML : Comparison of microleakage indirect and direct composite resin restoration in vitro. Oper Dent, 18:117-120, 1987.
  51. Lutz F, Krejci I, Luescher B, et al. : Improved proximal margin adaptation of Class II composite resin restorations by use of light-reflecting wedges. Quintessence Int, 17:659-664, 1986.
  52. Watts DC, al Hindi A : Intrinsic 'soft-start' polymerisation shrinkage-kinetics in an acrylate-based resin-composite. Dent Mater, 15:39-45, 1999. https://doi.org/10.1016/S0109-5641(99)00012-3
  53. Feilzer AJ, de Gee AJ, Davidson CL : Relaxation of polymerization contraction shear stress by hygroscopic expansion. J Dent Res, 69:36-39, 1990. https://doi.org/10.1177/00220345900690010501
  54. Warren K : An investigation into the microhardness of a light cured composite when cured through varying thickness of porcelain. J Oral Rehabil, 17:327- 334, 1990. https://doi.org/10.1111/j.1365-2842.1990.tb00016.x
  55. Uno S, Asmussen E : Marginal adaptation of a restorative resin polymerized at reduced rate. Scan J Dent Res, 99:440-444, 1991.
  56. Peutzfeldt A, Sahafi A, Asmussen E : Characterization of resin composites polymerized with plasma arc curing units. Dental Materials, 16:330-336, 2000. https://doi.org/10.1016/S0109-5641(00)00025-7
  57. Duret F : Rapid photopolymerization of dental composite material by combining two synergistic technologies ; Plasma arc light and Xenon gas. DMD Dental/Medical Diagnostic System, Inc. 1996-2000.