• Title/Summary/Keyword: 적층결함

Search Result 126, Processing Time 0.021 seconds

The Effect of Vandium on the microstructure and Elevated Temperature Sliding Wear Resistance of Fe-20Cr-1.7C-1Si-xV Hardfacing Alloy (Fe-20Cr-1.7C-1Si-xV 경면처리 합금의 미세조직과 고온 Sliding 마모저항성에 미치는 Vanadium의 영향)

  • Kim, Jun-Gi;Kim, Geun-Mo;Lee, Deok-Hyeon;Jang, Se-Gi;Gang, Seong-Gun;Kim, Seon-Jin
    • Korean Journal of Materials Research
    • /
    • v.8 no.10
    • /
    • pp.969-974
    • /
    • 1998
  • The effect of vanadium, which is known to decrease the stacking fault energy of Fe-base alloys, on the microstructure and elevated temperature sliding wear resistance of Fe-20Cr- 1.7C- 1Si alloy was investigated. The maximum amount of vanadium maintaining the austenitic matrix seems to be about 3wt.% in Fe-20Cr- 1.7C-1Si-xV (x = 0, 1, 3, 6. lOwt.%) alloys and the austenitic alloys showed better wear resistance than ferritic alloys. It was considered to be due to the low stacking fault energy and $\gamma->\alpha$ strain-induced phase transformation at rmm temperature. It was shown from elevated temperature sliding tests up to .$225^{\circ}C$ that the addition of vanadium increases the temperature, at which the transition from oxidative wear to adhesive wear occur, and the amount of d formed at $225^{\circ}C$. Thus, it was considered that the addition of vanadium improves the elevated temperature sliding wear resistance of Fe-20Cr- 1.7C - 1Si by reducing the increasing rate of stacking fault energy with temperature and by increasing Ma temperature.

  • PDF

Effects of Mask Misalignment and Crystal Defects on the Breakdown characteristics in the PN Junction Isolation (마스크 오정렬 및 결정 결함이 PN 접합 아이솔레이션의 항복 특성에 미치는 영향)

  • Jo, Gyeong-Ik;Baek, Mun-Cheol;Song, Seong-Hae
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.21 no.2
    • /
    • pp.47-53
    • /
    • 1984
  • Breakdown characteristics, specifically, soft breakdown phenomena of the PN junction isolation were studied in terms of their dependence on the mask misaliglment and the amount of process-related defects. Varying the distance between the buried layer and the isolation by intentional misalignment of the isolation masts had no effects on the soft breakdown phenomena except for the change of the breakdown voltage. The soft breakdown phenomena, as characterized as a state of excessive reverse current below the breakdown voltage, were found out to result mainly from the oxidation-induced stacking faults (OSF) introduced during the fabrication process.

  • PDF

Thermal Annealing Condition Dependence of Ion-implanted Silicon Recrystallization (열처리 조건에 따른 이온주입된 실리콘의 재결정화)

  • 이창희;이순일
    • Journal of the Korean Vacuum Society
    • /
    • v.4 no.4
    • /
    • pp.386-393
    • /
    • 1995
  • 이온주입된 실리콘 시료들의 열처리 조건에 따른 재결정화를 분광 타원해석법(Spectroscopic Ellipsometry, SE)을 사용하여 연구하였다. 열처리 후에도 잔류하는 결함들의 양과 분포를 구하기 위한 시료의 층구조 분석에 있어서 손상층의 유효굴절율은 Bruggeman 유효매질이론을 이용하여 구하였으며 기준 비정질실리콘 데이터로서는 완화된 비정질실리콘의 광학상수와 이온주입에 의해서 만들어진 비정질 실리콘의 광학상수를 함께 사용하였다. 조사된 대부분의 열처리 조건하에서 고체상 적층성장(solid-phase epitaxial growth)과정에 따라 비정질층이 재결정화되는 것이 관측되었다.

  • PDF

The effect of powder characteristics on the behavior of Co-firing of ferrite and varistor (Ferrite/varistor의 동시소성 거동에 대한 분체특성의 영향)

  • Han, Ik-Hyun;Lee, Yong-Hyun;Myoung, Seong-Jae;Chun, Myoung-Pyo;Cho, Jeong-Ho;Kim, Byung-Ik;Choi, Duck-Kyun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.17 no.2
    • /
    • pp.63-68
    • /
    • 2007
  • A number of process problems should be solved in the multi-layered ceramic devices such as EMI filter. In particular, it is essential to control the sintering shrinkage in co-firing of different materials for obtaining defect-free samples such as crack, camber, and delamination which usually occur near the surface and interface. We studied the effect of the powder properties of ferrite on the co-firing behavior of green ceramic layers composed of ferrite and varistor. Three kind of ferrite powder samples as a function of milling time (24, 48, and 72 hr) were prepared. Varistor and ferrite ceramic green sheet were made by means of doctor blade process using slurry (ceramic powder and binder solution). Here, slurry was prepared by mixing 55 wt% powder with 45wt% binder solution. Varistor and ferrite green sheets were laminated at $80 kg/cm^2$, and co-fired at $900^{\circ}C$ and $1000^{\circ}C$ for 3 hr. We obtained the camber-free and co-fired ferrite/varistor layer structure by controlling the milling time and sintering temperature.

Reconstruction and Deconvolution of X-Ray Backscatter Data Using Adaptive Filter (적응필터를 이용한 적층 복합재료에서의 역산란 X-Ray 신호처리 및 복원)

  • Kim, Noh-Yu
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.6
    • /
    • pp.545-554
    • /
    • 2000
  • Compton X-ray backscatter technique has been used to quantitatively assess the impact damage in quasi-isotropic laminated composites and to obtain a cross-sectional profile of impact-damaged laminated composites from the density variation of the cross section. An adaptive filter is applied to the Compton backscattering data for the reconstruction and noise reduction from many sources including quantum noise, especially when the SNR(signal-to-noise ratio) of the image is relatively low. A nonlinear reconstruction model is also proposed to overcome distortion of the Compton backscatter image due to attenuation effects, beam hardening, and irregular distributions of the fibers and the matrix in composites. Delaminations masked or distorted by the first few delaminations near the front surface are detected and characterized both in width and location, by application of an error minimization algorithm.

  • PDF

Numerical Design of Shielded Encircling Probe for RFEC Testing of Nuclear Fuel Cladding Tube (핵연료 피복재 튜브의 원격장와전류 탐상을 위한 차폐된 관통형 탐촉자의 수치해석적 설계)

  • Shin, Young-Kil;Shin, Sang-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.6
    • /
    • pp.650-657
    • /
    • 2001
  • This paper explains the process of designing a shielded encircling remote field eddy current (RFEC) probe to inspect nuclear fuel cladding tubes and investigates resulting signal characteristics. To force electromagnetic energy from exciter coil to penetrate into the tube, exciter coil is shielded outside by laminations of iron insulated electrically from each other. Effects of shielding and the proper operating frequency are studied by the finite element analysis and the location for sensor coil is decided. However, numerically simulated signals using the designed probe do not clearly show the defect indication when the sensor passes a defect and the other indication appeared as the exciter passes the defect is affected by the shape of shielding structure, which demonstrates that the sensor is directly affected by exciter fields. For this reason, the sensor is also shielded outside and this shielding dramatically improves signal characteristics. Numerical modeling with the finally designed probe shows very similar signal characteristics to those of inner diameter RFEC probe. That is, phase signals show almost equal sensitivity to inner diameter and outer diameter defects and the linear relationship between phase signal strength and defect depth is observed.

  • PDF

A study on the Thermal Buckling and Postbuckling of a Laminated Composite Beam with Embedded SMA Actuators (형상기억합금 선을 삽입한 복합적층 보의 열좌굴 및 좌굴후 거동에 관한 연구)

  • Choi, S.;Lee, J.J.;Lee, D.C.
    • Composites Research
    • /
    • v.12 no.3
    • /
    • pp.55-65
    • /
    • 1999
  • In this paper, the thermal buckling and postbuckling behaviour of composite beam with embedded shape memory alloy (SMA) wires are investigated experimentally and analytically. The results of thermal buckling tests on uniformly heated, clamped, composite beam embedded with SMA wire actuators are presented and discussed in consideration of geometric imperfections, slenderness ratio of beam and embedding position of SMA wire actuators. The shape recovery force can reduce the thermal expansion of composite laminated beam, which result in increment of the critical buckling temperature and reduction of the lateral deflection of postbuckling behaviours. It is presented quantitatively on the temperature-load-deflection behaviour records how the shape recovery force affects the thermal buckling. The cross tangential method is suggested to calculate the critical buckling temperature on the temperature-deflection plot. Based on the experimental analysis, the new formula is also proposed to describe the critical buckling temperature of a laminated composite beam with embedded SMA wire actuators.

  • PDF

The Effect of Defect Location Near a Circular Hole Notch on the Relationship Between Crack Growth Rate (da/dN) and Stress Intensity Factor Range (δK) - Comparative Studies of Fatigue Behavior in the Case of Monolithic Al Alloy vs. Al/GFRP Laminate - (원공노치 인근에 발생한 결함의 위치변화가 균열성장률(da/dN) 및 응력확대계수범위(δK)의 관계에 미치는 영향 - 단일재 알루미늄과 Al/GFRP 적층재의 피로거동 비교 -)

  • Kim, Cheol-Woong;Ko, Young-Ho;Lee, Gun-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.3 s.258
    • /
    • pp.344-354
    • /
    • 2007
  • The objective of this study is to investigate the effect of arbitrarily located defect around the circular hole in the aircraft structural material such as Al/GFRP laminates and monolithic Al alloy sheet under cyclic bending moment. The fatigue behavior of these materials may be different due to the defect location. Material flaws in the from of pre-existing defects can severely affect the fatigue crack initiation and propagation behavior. The aim of this study is to evaluate effects of relative location of defects around the circular hole in monolithic Al alloy and Al/GFRP laminates under cyclic bending moment. The fatigue behavior i.e., the stress concentration factor($K_t$), the crack initiation life($N_i$), the relationship between crack length(a) and cycles(N), the relationship between crack growth rate(da/dN) and stress intensity factor range(${\Dalta}K$) near a circular hole are considered. Especially, the defects location at ${\theta}_1=0^{\circ}\;and\;{\theta}_2=30^{\circ}$ was strongly effective in stress concentration factor($K_t$) and crack initiation life($N_i$). The test results indicated the features of different fatigue crack propagation behavior and the different growing delamination shape according to each location of defect around the circular hole in Al/GFRP laminates.

Development of Digital-Image-Correlation Technique for Detecting Internal Defects in Simulated Specimens of Wind Turbine Blades (풍력 블레이드 모의 시편의 내부 결함 검출을 위한 이미지 상관법 기술 개발)

  • Hong, Kyung Min;Park, Nak Gyu
    • Korean Journal of Optics and Photonics
    • /
    • v.31 no.5
    • /
    • pp.205-212
    • /
    • 2020
  • In the performance of a wind turbine system, the blades play a vital role. However, they are susceptible to damage arising from complex and irregular loading (which may even cause catastrophic collapse), and they are expensive to maintain. Therefore, it is very important both to find defects after blade manufacturing is completed and to find damage after the blade is used for a certain period of time. This study provides a new perspective for the detection of internal defects in glass-fiber- and carbon-fiber-reinforced panels, which are used as the main materials in wind turbine blades. A gap or fracture between fiber-reinforced materials, which may occur during blade manufacturing or operation, is simulated by drilling a hole 5 mm in diameter in the middle layer of the laminated material. Then, a digital-image-correlation (DIC) method is used to detect internal defects in the blade. Tensile load is applied to the fabricated specimen using a tensile tester, and the generated changes are recorded and analyzed with the DIC system. In the glass-fiber-reinforced laminated specimen, internal defects were detected from a strain value of 5% until the end of the experiment, while in the case of the carbon-fiber-reinforced laminated specimen, internal defects were detected from 1% onward. It was proved using the DIC system that the defect was detected as a certain level of strain difference developed around the internal defects, according to the material properties.

Detectability of Pore Defect in Wind Turbine Blade Composites Using Image Correlation Technique (이미지 상관 기법을 이용한 풍력 발전 블레이드용 복합재료의 기공 결함 검출능)

  • Kim, Jong Il;Huh, Yong Hak;Lee, Gun Chang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.10
    • /
    • pp.1201-1206
    • /
    • 2013
  • Defects that occur during the manufacturing process or operation of a wind turbine blade have a great influence on its life and safety. Typically, defects such as delamination, pore, wrinkle and matrix crack are found in a blade. In this study, the detectability of the pores, a type of defect that frequently occur during manufacturing, was examined from the full field strain distribution determined with the image correlation technique. Pore defects were artificially introduced in four-ply laminated GFRP composites with $0^{\circ}/{\pm}45^{\circ}$ fiber direction. The artificial pores were introduced in consideration of their size and location. Three different-sized pores with diameter of 1, 2 and 3 mm were located on the top and bottom surface and embedded. By applying static loads of 0-200 MPa, the strain distributions over the specimen with the pore defects were determined using image correlation technique. It was found the pores with diameter exceeding 2 mm can be detected in diameter.