• Title/Summary/Keyword: 적조생물

Search Result 182, Processing Time 0.03 seconds

Design and Implementation of Red Tide Monitoring System using Wireless Sensor Network (무선 센서 네트워크를 이용한 적조 모니터링 시스템의 설계 및 구현)

  • Heo, Min;Yim, Jae-Hong;Kim, Byoung-Chan
    • Journal of Navigation and Port Research
    • /
    • v.31 no.3 s.119
    • /
    • pp.263-269
    • /
    • 2007
  • The outbreaks of red tide were sporadic in the South Sea until 1994, but have become frequent and widespread in whole coastal waters of the South Sea and East Sea since 1995 For monitoring of red tide, many kinds of techniques such as remote sensing, GIS and fuzzy model system have been developed and applied. The purpose of this paper is to develop red tide monitoring system for collection of red tide data and biological-oceanography parameters using wireless sensor network. The wireless sensor network has been noticed as a core technology in order to realize ubiquitous computing. In this paper, we design red tide database using wireless sensor network and suggest red tide monitoring software and web-service for user and biological-oceanographer.

Physiological Ecology of parasitic Dinoflagellate Amoebophrya and Harmful Algal Blooms (기생성 와편모류 Amoebophrya의 생리 생태적 특성과 적조)

  • 박명길
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.7 no.3
    • /
    • pp.181-194
    • /
    • 2002
  • Parasitism is a one-sided relationship between two organisms in which one benefits at the expense of the other. Parasitic dinoflagellates, particularly species of Amoebophrya, have long been thought to be a potential biological agent for controlling harmful algal bloom(HAB). Amoebophrya infections have been reported for over 40 species representing more than 24 dinoflagellate genera including a few toxic species. Parasitic dinoflagellates Amoebophrya spp. have a relatively simple life cycle consisting of an infective dispersal stage (dinospore), an intracellular growth stage(trophont), and an extracellular reproductive stage(vermiform). Biology of dinospores such as infectivity, survival, and ability to successfully infect host cells differs among dinoflagellate host-parasite systems. There are growing reports that Amoebophrya spp.(previously, collectively known as Amoebophrya ceratii) exhibit the strong host specificity and would be a species complex composed of several host-specific taxa, based on the marked differences in host-parasite biology, cross infection, and molecular genetic data. Dinoflagellates become reproductively incompetent and are eventually killed by the parasite once infected. During the infection cycle of the parasite, the infected host exhibits ecophysiologically different patterns from those of uninfected host in various ways. Photosynthetic performance in autotrophic dinoflagellates can be significantly altered following infection by parasitic dinoflagellate Amoebophrya, with the magnitude of the effects over the infection cycle of the parasite depending on the site of infection. Parasitism by the parasitic dinoflagellate Amoebophrya could have significant impacts on host behavior such as diel vertical migration. Parasitic dinoflagellates may not only stimulate rapid cycling of dissolved organic materials and/or trace metals but also would repackage the relatively large sized host biomass into a number of smaller dinospores, thereby leading to better retention of host's material and energy within the microbial loop. To better understand the roles of parasites in plankton ecology and harmful algal dynamics, further research on a variety of dinoflagellate host-parasite systems is needed.

A Study on Red Tide Monitoring system using Wireless Sensor Network (무선센서네트워크를 이용한 적조모니터링 시스템 구축을 위한 연구)

  • Min Heo;Mo Soo-Jong;Yim Jae-Hong;Kim Ki-Moon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.489-492
    • /
    • 2006
  • Red tide occurred sporadically in early 90s. But It is happening extensively by global warming. So, Airline observation, Red tide buoy development, and Red tide alarm system research is progressing for monitor ring. However, study to early forecast red tide and red tide alarm system did not exist hard. This paper proposed development that design and implementation red tide database of using wireless sensor network. There are GPS, Water Temperature sensor, Oxygen sensor, and Turbidity sensor in each node. And data is stored to red tide database through Ad-hoc network. This data is integrated and analyzed. So, forecast red tide. And red tide database has red tide data that happen at past. This is utilized to comparative analysis data for red tide estimate. Main screen displays position of node and measured value in electron map. Much studies must be backed for this a study. But I think that contribute to analyze red tide data by red tide database construction.

  • PDF

Isolation of Marine Bacteria Killing Red Tide Microalgae -III. Algicidal Effects of Marine Bacterium, Micrococcus sp. LG-5 against the Harmful Dinoflagellate, Cochlodinium polykrikoides- (적조생물 살조세균 탐색 -III. 유해성 적조생물 Cochlodinium polykrikoides에 대한 Micrococcus sp. LG-5의 살조 효과-)

  • JEONG Seong-Youn;PARK Young-Tae;LEE Won-Jae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.33 no.4
    • /
    • pp.331-338
    • /
    • 2000
  • The algicidal effects of marine bacteria were investigated and a strain, which had the strongest algicidal activity against the harmful dinoflagellate, Cochiodinim polykrikoides was selected. The bacterium was isolated in seawater during the period of blooming of C. polykrikoides in Masan Bay. This algicidal bacterium was identified as Micrococcus sp. LG-5 by means of morphological and biochemical tests. The optimal culture conditions of Micrococcus sp, LG-5 were $25^{\circ}C,\;pH 7.0\;and\;3.0{\%}$ NaCl concentration. The algicidal activity of Micrococcus sp. LG-5 was significantly increased to maximum value in the late of logarithmic phase of cell cuture. In addition, the culture filtrate ($pore size,\;0.1{\mu}m$) of Microcoocus sp. LG-5 showed strong algicidal effects. The cell numbers of C. polykikoides were decreased from $1.2{\times}10^4 cells/ml\;to\;less\;than\;2{\times}10^3\;cells/ml$ within 3, 6, 30 hours at the concentrations of culture filtrate $10{\%},\;5{\%}\;and\;1{\%}$, respectively. These results indicated that the algicidal effect was mediated by certain substances released from Microooccus sp. LG-5.

  • PDF

Outbreak of red tides in the coastal waters off the southern Saemankeum areas, Jeonbuk, Korea 2. Temporal variations in the heterotrophic dinoflagellates and ciliates in the summer-fall of 1999 (전북 새만금 남쪽 해역의 유해성 적조 발생연구 2. 1999년도 여름-가을 종속영양성 와편모류와 섬모충류의 시간적 변화)

  • 정해진;유영두;김재성
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.7 no.3
    • /
    • pp.140-147
    • /
    • 2002
  • We investigated the temporal variations in the heterotrophic dinoflagellates (hereafter HTD), tintinnid ciliates(TC), and naked ciliates(NC) from August to November 1999 in the coastal waters off the southern Saemankeum areas where a huge red tide dominated by Cochlodinium polykrikoides/Gymnodinium impudicum was first observed in 1998. We took water samples from 2-5 depths of 4 stations in each of the 5 cruises and then measured the species composition and abundances of HTD, TC, and NC The maximum species numbers and densities of HTD, TC, and NC(11, 12, and 10 cells $m\ell$$^{-1}$ , respectively) were observed when the density of diatoms was highest (August 10), while the lowest values (1.0, 0.5, and 2.4 cells $m\ell$$^{-1}$ , respectively) were found when the red tide dominated by C. polykrikoides/G. impudicum took placed (October 18). On August 10 and November 11 when diatoms dominated the abundance of phytoplankton, the correlation coefficients between TC, NC and diatoms were relatively high. However, On September 16 and October 18 when autotrophic+mixotrophic dinoflagellates(ATD+MTD) were abundant, the correlation coefficients between HTD and ATD+MTD were relatively high. The large HTD Noctiluca scintillans was the most dominant heterotrophic protists during the C. polykrikoides/G. impudicum red tide on October 18. N. scintillans has been known to feed on the prey cells when the swimming speeds of C. polykrikikoides/G. impudicum markedly reduced at the decline stage of the red tide. Therefore, N. scintillans could be effective grazers on C. polykrikoides/G. impudicum. The maximum densities of HTD, TC, and NC in the study area were fairly lower than those obtained in the waters off Kohung-Yeosu areas in the summer-fall, 1997. The results of the present study provide the basis of understanding predator-prey relationships between dominant phytoplankton and heterotrophic protists and the roles of the protist grazers in bloom dynamics in the waters off the western Korea.

Impacts of Temperature, Salinity and Irradiance on the Growth of Ten Harmful Algal Bloom-forming Microalgae Isolated in Korean Coastal Waters (한국연안에서 분리한 적조형성 미세조류 10종의 성장에 미치는 온도, 염분, 광도의 영향)

  • Lee, Chang-Kyu;Lee, Ok-Hee;Lee, Sam-Geun
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.10 no.1
    • /
    • pp.79-91
    • /
    • 2005
  • In order to understand growth characteristics of ten major species of microalgae responsible for frequent harmful algal blooms in Korean coastal waters, the growth rates of the isolates were examined in relation with the impacts of water temperature, salinity and irradiance. In addition, their bloom events since 1990 as well as monthly abundance of vegetative cells were analyzed. Heterocapsa triquetra, Eutreptiella gymnastica and Alexandrium tamarense were considered as relatively mid temperature adapted species in that growth rates were comparatively high at low water temperatures of $10{\sim}16^{\circ}C$ and drastically decreased at above $22^{\circ}C$. Prorocentrum micans and Pyramimonas sp. were categorized as relatively high temperature adapted species by showing comparatively better growths at high water temperatures above $25^{\circ}C$. Akashiwo sanguinea, Heterosigma akashiwo, Prorocentrum minimum and Scrippsiella trochoidea were eurythermal species with relative high growth rates in a broad ranges of water temperature, $16{\sim}25^{\circ}C$ were slightly halophobic, showing better growths at low salinities of $10{\sim}30$ psu than at above 35 psu. H. akashiwo, P. minimum and H. triquetra were euryhaline species with remarkable growths in a broad ranges of salinity, 15-40 psu. Frequent algal blooms by these three species at extremely low salinities below 25 psu after rainfall were attributed to their euryhaline and slightly halophobic physiological characteristics. Growth rates of H. akashiwo, P. minimum and Pyraminonas sp. increased with the increase of irradiance within the experimental ranges of $2{\sim}150\;{\mu}E{\cdot}m^{-2}{\cdot}s^{-1}$. However, A. sanguinea, A. tamarense and H. triquetra showed better growths at comparatively low irradiance of $50{\sim}100\;{\mu}E{\cdot}m^{-2}{\cdot}s^{-1}$ and drastic decreases in growth rates above $150\;{\mu}E{\cdot}m^{-2}{\cdot}s^{-1}$ of irradiance. Overall, relatively high temperature adapted species make blooms frequently in high water temperature season with strong natural irradiance, and relatively low temperature adapted species grow better at low water temperature with relatively weak natural irradiance.

Molecular Discrimination of Dinoflagellates Cochlodinium Polykrikoides Margalef, Gyrodinium Impudicum Fraga et Bravo and Gymnodinium Catenatum Graham using RAPD-PCR Method (RAPD-PCR 방법을 이용한 Cochlodinium polykrikoides Gyrodinium impudicum, Gymnodinium catenatum의 분자생물학적 진단)

  • Cho, Eun-Seob
    • Journal of Life Science
    • /
    • v.13 no.5
    • /
    • pp.651-657
    • /
    • 2003
  • Randomly amplified polymorphic DNA (RAPD) analysis was used to study genetic relationships among C. polykrikoides, G. impudicum and G. catenatum, which possess similar morphological features. Four of 12 primers were selected and 59 amplification products ranged from 0.2 kb to 3.0 kb. The number of polymorphic products in C. polykrikoides, G. impudicum and G. catenatum was 16 (27.1%), 8 (13.5%), and 16 (27.1%), respectively, while 17 were monomorphic. Number of species-specific bounds was 26 (44.0%), 34 (57.6%), 26 (44.0%) in C. polykrikoides, G. impudicum and G. catenatum, respectively. The genetic similarity between C. polykrikoides and G. impudicum/G. catenatum was 0.83, whereas G. impudicum and G. catenatum was 0.78. Our results suggest that C. polykrikoides, G. impudicum and G. catenatum are extremely different on the basis of RAPD analysis, despite similarity based on their morphology. The RAPD technique appears to be efficient in detecting genetic variation in these dinoflagellates.

Genetic Study of the Class Dinophyceae Including Red Tide Microalgae Based on a Partial Sequence of SSU Region : Molecular Position of Korean Isolates of Cochlodinium polykrikoides Margalef and Gyrodinium aureolum Hulburt (SSU 부위의 유전자 염기서열 분석에 의한 한국연안에서 분리한 Cochiodinium polykrikoides Margalef와 Gyrodinium aurelum Hulburt 적조생물의 분자생물학적 연구)

  • Cho, Eun-Seob
    • Journal of Life Science
    • /
    • v.14 no.4
    • /
    • pp.593-607
    • /
    • 2004
  • The nucleotide sequence for a nuclear-encoded small subunit rDNA (SSU rDNA) was determined for 43 species of the class Dinophyceae, including harmful algae Cochlodinium polykrikoides and Gyrodinium aureolum. These sequences and data analyses were performed by parsimony, distances and maximum likelihood methods in PHYLIP (Phylogenetic Inference Package) version 3.573c. The species Noctiluca scintillans, Gonyaulax spinifern and Crypthecodinium cohnii occupied a basal position within the Dino- phyceae in our analyses. The genera Alexandrium and Symbiodinium were monophyletic (supported by a bootstrap value of >70%), whereas the genera Gymnedinium and Gyrodinium formed polyphyletic nodes, for which bootstrap support was strong (>70%) in the neighbor-joining and maximum likelihood methods except for the PHYLIP parsimony analysis (=59%). The sequence divergence between G. aureolum and G. dorsum/ G. galathenum was the largest at 7.4% (45 bp), whereas G. aureolum and G. mikimotoi showed an extremely low value of genetic divergence of 0.9% (5 bp). The genetic divergence between C. polykrikoides and G. aureolum was a low value of 5.2% (31 bp). In the phylogenetic analysis, the placement of G. aureolum and C. polykrikoides was closer to the genus Gymnodinium than to the genus Gyrodinium, which was supported by a moderate bootstrap value.