• Title/Summary/Keyword: 적정시비

Search Result 311, Processing Time 0.037 seconds

Comparison of Nitrate Accumulation in Lettuce Grown under Chemical Fertilizer or Compost Applications (화학비료와 퇴비 시용으로 재배한 상추의 질산염 축적 비교)

  • Lee, Yoon-Jung;Chung, Jong-Bae
    • Korean Journal of Environmental Agriculture
    • /
    • v.25 no.4
    • /
    • pp.339-345
    • /
    • 2006
  • Accumulation of nitrate in green vegetables is undesirable due to potential risks to human health. Lettuce was cultivated in pots under greenhouse conditions with compost applications of 2,000 and 4,000 kg/10a, and the growth and nitrate accumulation of lettuce were compared with those found in the lettuce cultivated with chemical fertilizers of recommended levels. Content of $NH_4-N$ in the soils of compost applications were much lower than those found in the soil of chemical fertilizer application. Two weeks after lettuce transplant $NH_4-N$ was not found in the soils of compost applications, and in the soils of chemical fertilizers application $NH_4-N$ was not found three weeks after lettuce transplant. One week after lettuce transplant content of $NO_3-N$ was much higher in the soils of compost applications, and the contents were rapidly decreased. While, the content of $NO_3-N$ in the soil of chemical fertilizers application was rapidly increased due to the nitrification of $NH_4$ released from the applied urea. At the time of harvest contents of $NO_3-N$ in the soils of compost applications were less than 1.4 mg/kg, but in the soil of chemical fertilizers application the content of $NO_3-N$ was 54.2 mg/kg. Contents of $NH_4$ in lettuce were about 20 mg/kg FW and were not much different among the treatments. However, contents of $NO_3$ in lettuce were significantly different between the treatments of chemical fertilizer and compost. There were significant differences in fresh and dry weights, and growth of lettuce in the compost treatment of 4,000 kg/10a was highest among the treatments. These results indicate that the cultivation with compost only as N source can produce higher yield of lettuce and significantly reduce nitrate accumulation as compared to the conventional cultivation with chemical fertilizers.

Relative Effectiveness of Bone Meal as a Phosphorus Fertilizer Compared with Fused Phosphate (용성인비와 비교한 골분의 인산질 비료 효과)

  • Chung, Jong-Bae;Jeong, Byeong-Ryong
    • Korean Journal of Environmental Agriculture
    • /
    • v.36 no.1
    • /
    • pp.1-6
    • /
    • 2017
  • BACKGROUND: Bone meal is commonly used as a phosphorus (P) fertilizer in organic farming. Effectiveness of bone meal was compared with mineral P fertilizer to elucidate the optimum application rates of bone meal in crop production. METHODS AND RESULTS: The effects of bone meal and fused phosphate on plant growth and P uptake were determined in a pot experiment with maize (Zea mays L.) in a clay loam soil. Bone meal and fused phosphate were applied at 150 and 300 mg $P_2O_5/kg$ soil, and maize was grown for 3 consecutive growth periods of 4 to 5 weeks each. As compared with fused phosphate, total shoot growth of maize per pot was 3-6% lower in bone meal fertilization, and the difference was not significant in the application of 300 mg $P_2O_5/kg$. At the same P application rate, uptake of P by maize plants was 7-9% lower in bone meal treatment. The P use efficiency in bone meal treatments ranged from 11.9-13.6%, equivalent to 73-84% of the efficiency for fused phosphate treatments. CONCLUSION: The equivalence of immediate effectiveness of bone meal as a P fertilizer was at least 90% compared with fused phosphate in the pot experiment with maize. The results indicate that bone meal could be a reasonable alternative to chemical P fertilizers.

Estimation of Nitrogen Optimum Level for Rice Planting after Italian Ryegrass (Lolium multiflorum Lam.) Cultivation (이탈리안 라이그라스 후작 벼 재배시 수량을 고려한 적정 질소시비량 추정)

  • Song, Yo-Sung;Park, Woo-Kyun;Lee, Ye-Jin;Lee, Jong-Sik;Yun, Hong-Bae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.3
    • /
    • pp.448-451
    • /
    • 2011
  • To establish the optimum nitrogen level for rice planting after Italian ryegrass cultivation, one experiment was conducted on a normal paddy soil (Jeonbug series soil taxonomy) with six different nitrogen treatments for two years from 2009 to 2010. The treatments were including no nitrogen fertilization (Free N), 50%-Basal N, 75%-Basal N, 100%-Basal N, 150%-Basal N and 100% of basal fertilization with $30kg\;N\;ha^{-1}$ (100%+N30-Basal N) for decomposing of Italian ryegrass stubble. The highest rice yields were 8,420 obtained by 100%-Basal N. 150%-Basal N and 100%+N30-Basal N produced a rice yield of $8,190kg\;ha^{-1}$. Those of 50%-Basal N and Free N were produced 8,020 and $7,370kg\;ha^{-1}$, respectively. The correlation between rice yield and nitrogen treatment showed a quadratic relationship in high significant. According to this regression, the highest level of nitrogen treatment was $73kg\;ha^{-1}$ and the highest rice yield was $8,405kg\;ha^{-1}$. Nitrogen uptake rates were relatively higher with lower amounts of nitrogen fertilizer treated.

Prospects of Fertilizer Demand based on Recent Consumption (최근(最近)의 비료소비면(肥料消費面)에서 본 비료수요전망(肥料需要展望))

  • Park, Young-Dae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.9 no.3
    • /
    • pp.149-163
    • /
    • 1976
  • In Korea, the ever-increasing population has become a serious problem and the decreasing of cultivated lard area per person has become a major concern. Therefore, today we are implementing a green revolution using miracle varieties which require more fertilizer. The increased use of fertilizer along with development and adoption of high yielding varieties is the key to carrying out this green revolution. Fertilizer consumption in Korea is mainly influenced by agricultural techniques, fertilizer prices and government policies for increasing food production. If there are no special change, such as a cataclysm or an exhaustion of resources, it is quite clear that the fertilizer demand will increase to the near maximum ceiling point of optimum levels for crops in the year 2000. Fertilizer demand is not the amount of fertilizer that will be used by the farmer, but the actual optimum amount of plant nutrients required for maximum production. In this report, two alternative strategies are consideded in forecasting the future feitilizer demands. Alternative I is projected by reviewing consumption amounts over the last 10 years (1966~75) in Korea. The annual rate of increase in fertilizer consumption for the last 10 years was approximately 8.7% (table 1). Plant nutrient consumption rates in later years have been more balanced, and also fertilizer consumption per total acreage is considerably higher in Korea than in other countries (table 11), consequently the rate of increase in the future is expected to decline. Looking at the long term projections, the average annual rate of increase is expected to be 7% for 1976~80, 2.5% for 1981~90, 1.5% for 1991~2000. Thus, total projected fertilizer demands are estimated at 1,208,000M/T by 1980, 1,547,000M/T by 1990, 1,795,000M/T by 2000 (table 16). Alternative II is based on projected optimum fertilizer levels for crops and on increased crop acreage. The government recommended fertilizer rate has increased by a factor of 0.99 to 5.49 over the past twelve years depending on the specific crops (table 4). Levels of fertilizer demand recommended by government (table 7) in 1976 are still low compared with actual optimum fertilizer demands for crops (table 5). Therefore, future incaeases in fertilizer usage are anticipated. Thus, total projected fertilizer demands are estimated at 1,229,000M/T by 1980, 1,493,000M/T by 1990 and 1,898,000M/T by 2000(table 16).

  • PDF

Fertilizer Recommendation Based on Soil Testing for Tomato in Plastic Film House (토양검정에 의한 시설재배 토마토의 적정 시비량 추천)

  • Hong, Soon-Dal
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.31 no.4
    • /
    • pp.350-358
    • /
    • 1998
  • To determine the optimum application of fertilizers for the cultivation of tomato in plastic film house, eighteen soils which contained different salt contents were taken from four different areas under plastic film house cultivation, Youngdong, Boeun, Cheongweon county, and Cheongju city. The dry weight and the amount of N, P, and K uptakes of tomato in the plot with no fertilization were considered as the factors representing the fertility of the soil. The differences in the dry weight and in the amounts of N, P, and K uptakes of plants between the plots with fertilization and with no fertilization were considered as the factors representing the total effect of fertilizer and the effects of fertilizer N, P, and K, respectively. These factors of soil fertility and fertilizer effects were estimated by correlation and regression with the chemical properties of the soil in order to find the critical levels and recommended method for optimum fertilization of tomato. The standardized partial regression coefficients of inorganic nitrogen ($NO_3-N+NH_4-N$) contents in soil for the factors of fertility ranged from 247 to 1,159, showing the best, while those of the others ranged from 0.02 to 4.02. Those of inorganic nitrogen ($NO_3-N+NH_4-N$) contents in soil for the electrical conductivity were also the best and were ranged from 35.2 to 36.0 compared with the values of less than 1.0 of the others. These results demonstrate that the content of inorganic nitrogen in the soil is the best index for both soil fertility and electrical conductivity of the soil. The critical level of inorganic nitrogen ($NO_3-N+NH_4-N$) in the soil for maximum productivity with zero value of fertilizer effects for tomato, estimated through Cate-Nelson split method was $220mg\;kg^{-1}$. This was the same value as evaluation for the cultivation of chinese cabbage. In conclusion, for optimal application of fertilizer in plastic film house, 1) no fertilization is recommended when the contents of inorganic nitrogen in the soil is more than $220mg\;kg^{-1}$; however, 2) in the case of less than $220mg\;kg^{-1}$ of inorganic nitrogen content in the soil, the optimal level of fertilization could be estimated through the regression equation between fertilizer effects and content of inorganic nitrogen in the soil.

  • PDF

Studies on Fertilizer-Managements and Growth Analysis in the Rejuvenating Bamboo Grove (회복도상(回復途上)에 있는 참대림(林)의 비배(肥培)와 생장해석(生長解析)에 관(関)한 연구(硏究))

  • Jin, Hee Sung;Chong, Hyun Pae
    • Journal of Korean Society of Forest Science
    • /
    • v.56 no.1
    • /
    • pp.51-65
    • /
    • 1982
  • The growth characteristics and appropriate fertilizer-managements in the rejuvenating bamboo grove were studied with Phyllostachys reticulata. The bamboo soil was the sandy loam with rich humus. In the fertilized plots, the N-fertilizer was significantly absorbed, and it was necessary to fertilize the K-fertilizer continuously. According to the development of rejuvenating after flowering, the temperature and relative illumination became lower. while the moisture became higher. The relationship between the diameter at eye height (D) and the culm length (H) of each bamboo can be expressed as follow; $H=2.5538D^{0.5031}$ The leaf area is the major factor for the production of the bamboo grove. Therefore in the rejuvenating grove, we should refrain form pruning or felling of not -flowering bamboo. The theoretical distribution of the internodal length was obtained by the distribution curve line of the internodal length derived from the regular distribution curve line. Relatively long and even internodal length was found in the fertilized plots 2 and 4. The relation between $D^2H$ and dry weight of culm or dry weight of the above ground part were given by linear regression in both relations respectively on the logarithmic coordinates, but the propertional relation was not established in these relations. The biomass of the above ground part obtained by the allometry method showed high values in the fertilized plots 2.5 and 6. The appropriate amounts of the three elements, N, P and K for the maximum dry matter were 24.19, 15.51, 8.63 kg/10a, respectively.

  • PDF

Optimum Planting Density in Low Fertilizing Culture of Machine Transplanting in Rice (벼 기계이앙 소비재배시 적정 재식밀도 구명)

  • Choi Weon-Young;Moon Sang-Hoon;Park Hong-Kyu;Choi Min-Gyu;Kim Sang-Su;Kim Chung-Kon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.5
    • /
    • pp.379-385
    • /
    • 2006
  • This experiment was carried out to investigate the optimum planting density in low fertilizing cultivation of machine transplanting in rice field of Honam Agricultural Research Institute, NICS for $2004{\sim}2005$. Sobibyeo which belongs to medium maturing variety and Nampyeongbyeo which belongs to medium-late maturing variety were transplanted on May 30. In this experiment, there was no significant difference in heading date between planting density and nitrogen fertilization rate, and heading dates were August 8 in Sobibyeo, and August 14 in Nampyeongbyeo respectively. In relation to lodging character, lodging Index was high where the nitrogen fertilization rate and planting density were high. As planting density increases, panicle number per $m^{2}$ increased irrespective of nitrogen fertilization rate. When nitrogen was 6 kg/10a, rice yield of Sobibyeo was more where planting density was 90 hill per $3.3m^{2}$, and that of Nampyeongbyeo was more where planting density was 80 hill per $3.3m^{2}$. When nitrogen was 9 kg/10a, rice yield of Sobibyeo was more where planting density was 100 hill per $3.3m^{2}$, and that of Nampyeongbyeo was more where planting density was 110 hill per $3.3m^{2}$. Head rice rate of brown rice was higher when planting density increased, and was higher at 6 kg/10a nitrogen rate than 9 kg/10a nitrogen rate in all varieties.

Effect of Split Nitrogen Application Times on Turf Vegetation of Creeping Bentgrass (질소 분시횟수가 Creeping Bentgrass 잔디초지의 식생에 미치는 영향)

  • Park, Sung-Jun;Cho, Nam-Ki;Kang, Young-Kil;Song, Chang-Khil;Cho, Young-Il
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.25 no.2
    • /
    • pp.119-124
    • /
    • 2005
  • This study was conducted from March 21 to July 8 in 2004 at JeJu Island to investigate the influences of split nitrogen application times on creeping bentgrass vegetation. Nitrogen rate was 20 kg/10a and it was applied from once to 5 times. The result obtained were summarized as follows; plant height was getting longer as nitrogen was split applied from once to 5 times. So it was longest at 5 times split nitrogen application, but it was no significance from 4 to 5 times. Root length, Minolta SPAD-502 chlorophyll meter reading value, leave and root weight n[e directly proportional plant height response. Degree of land cover Iud density of creeping bentgrass increased as nitrogen was split applied from once to 5 times. But degree of land cover md density of reed decreased. The number of reed species on decreased as nitrogen was split applied from once to 5 times. Then ranking of the dominant weeds were Portulaca oleracea Polygonum hydropiper and Stellaria media (at once split time nitrogen application), Portulaca oleracea, Polygonum hydropiper and Digitaria adscendens (at 2 split times nitrogen application), Digitaria adscendens and Portulaca oleracea Polygonum hydropiper, (at 3 split times nitrogen application), Portulaca oleracea, Poa annua and Polygonum hydropiper (at 4 md 5 split times nitrogen application). These results indicate that the optimum frequency of split N applications is four times for growth of creeping bentgrass in volcanic ash soils of Jeju island.

Culm Characteristics of Rice Plant Related to Lodging Resistance under Different Nitrogen Levels in Direct Seeding on Flooded Paddy Surface (벼 담수표면직파재배 질소시비 기준에 따른 줄기 특성과 도복과의 관계)

  • 송동석;김진호;이성춘
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.41 no.3
    • /
    • pp.308-317
    • /
    • 1996
  • These experiments were conducted to investigate variation of physical characteristics of the culm related to lodging resistance by nitrogen levels under direct seeding on flooded paddy surface. The number of seedling per m$^2$ were from 103 to 110 plants, and seedling ratios were ranged from 66.7% to 71.2%. The lodging occurrence were increased in order to the nitrogen levels 15 kg, 10 kg, 5 kg /10a, and the lodging resistant varieties ; Dongjinbyeo and Cheongmyungbyeo showed less values of field lodging than those of lodging susceptible varieties ; Daecheongbyeo, Palgongbyeo and H waseongbyeo. The lodging resistance was decreased in semidwarf varieties compare with long culm varieties, but Dongjinbyeo, long culm variety has lodging resistance. The occurrence of lodging decreased with lower values in top moment, but with higher values in the breaking moment with leaf sheath. The root dry weight positively correlated with weight of culm base, but modulus of section was negatively correlated with bending curvature, respectively.

  • PDF

Effect of Seeding and Nitrogen rates on the Growth characters, Forage yield, and Feed value of Barnyard millet in the Reclaimed tidal land (간척지에서 파종량 및 질소 시비량에 따른 사료용 피의 생육특성과 사료 수량)

  • Hwang, Jae-Bok;Park, Tae-Sun;Park, Hong-Kyu;Kim, Hak-Sin;Choi, In-Bae;Bae, Hee-Soo
    • Weed & Turfgrass Science
    • /
    • v.6 no.2
    • /
    • pp.124-129
    • /
    • 2017
  • The Experiments were conducted by moderate season culture of each of early, medium and late maturing varieties which were considered to be of strong salt tolerance in low and high salty reclaimed areas (0.2% at the May). This study was carried out to investigate the proper nitrogen fertilizer level and seeding rates at reclaimed saline land in Korea. The proper seeding rates were $40kg\;ha^{-1}$ in 0.2% saline land. The dry matter production of barnyard millet was possibly estimated by exponential functions of $Y=0.0098X^2+0.7030X+2.6267$. Effects of nitrogen rate on agronomic characteristics, forage yield, and chemical composition of barnyard millet to reclaimed tidal land are summarized as follows: The proper nitrogen fertilizer level was $200kg\;ha^{-1}$ in 0.2% saline land. N was absorbed actively before the emergence of the barnyard millet but showed relative decrease thereafter. The early growth of the barnyard millet was inhibited, resulting in the favorable late growth, increased panicle weight and ratio of matured grain. These results suggest that barnyard millet is the most forage crops for cultivation on reclaimed tideland in view of the good emergence and forage production.