• Title/Summary/Keyword: 적정공사비

Search Result 140, Processing Time 0.026 seconds

A Study on the Design Concept & Construction Method of Office Building with Stacks at Thermal Power Plant (화력발전소 연돌통합형 종합사무동의 설계개념과 시공공법 연구)

  • Kim, Si-Hyun;Choi, Jang-Soon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.7
    • /
    • pp.677-686
    • /
    • 2016
  • A thermal power plant is the first CFBC (Circulating Fluidized Bed Combustion) power plant consisting of 2 boilers-1 turbine. The optimal height of a stack needs to be approximately 156 meters in the case of this thermal power plant; however, the thermal power plant sites satisfy a function and reduce the construction cost by using mountains in the sites after cutting the ground and locating an integrated office and chimney at an altitude of 70 meters thereby lowering the height of the stack to 86 meters. In addition, the integrated office, which has a combined stack style with a unique design, is constructed by connecting with 2 stacks and disposing the office and an observatory in the space between them. Therefore, this study examined the design concept that fulfils the structural, functional, and aesthetic factors, harmoniously by joining the integrated office and the stack, which are disparate, and investigated special construction methods (Slip Form, Steel Inner Flue & Lift-up) through which heterogeneous architectures are structurally, functionally, and aesthetically constructed.

A methodology for an effective utilization of construction equipment for highway construction projects (도로공사 공정계획을 위한 공정 로직 및 건설장비 효율화 방안)

  • Song, Hojeong;Choi, Jaehyun
    • Korean Journal of Construction Engineering and Management
    • /
    • v.15 no.6
    • /
    • pp.26-34
    • /
    • 2014
  • Highway construction is a combination of linear, repetitive, and highly equipment intensive operations. Various types of construction equipment are deployed to ensure undisrupted performance of construction, and thus productivity improvement and cost-saving can be achieved through well-thought-out planning. The selection of construction equipment is dependent upon construction sequence, site conditions, and construction methods. In the process of planning, management should consider various types of construction methods per each type of construction operation. Also, management should map out proper construction equipment operation plan that takes the construction duration and cost measures into consideration. However, limited availability of historic data from the similar types of operations has been a stumbling block to proper construction planning, making the operations performed based upon experience and intuition guided by rules-of-thumb. As a consequence, the planing phase rarely provided an adequate validity in the implementation phase. The researchers developed a process logic for each construction type that management can utilize from early phase of highway construction planning process. Moreover, derived the construction equipment combination optimized for efficiency by using the process simulation technique. The developed method is expected to be useful for the decision-making process that aims to evaluate efficiency of various process plans and to ensure optimal selection of construction equipment for highway construction projects.

Design Efficiency Improvement Method Research for High Strength Steel Pipe Pile at Gwangyang Area (광양지역 고강도 강관 항타말뚝의 설계효율 향상 방안 연구)

  • La, SeungMin;Yoo, Hankyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.6C
    • /
    • pp.231-240
    • /
    • 2011
  • Various pile load tests were carried out at Gwangyang district for 10 different piles in order to analyze the characteristcs of steel pile using high strength steel and high driving energy. Pile drivability results showed that PHC piles needed highest total blow count even with the shortest pile length and high strength steel pipe piles showed smallest total blow count eventhough driven to a more hard ground condition with longer pile length. Pile dynamic analysis results showed that for PHC pile and general steel pipe pile the allowable pile design load was decided by the allowable material strength but for high strength steel pipe pile the design load can be decided according to the ground bearing capacity. Static load test and load transfer test results showed that the pile design efficiency could be improved over 80% allowing lesser number of piles necessary for a more economical solution. Set-up effects was analyzed and regression equation for the site ground condition was derived. Bearing capacity was checked with widely used design equation and the limitation of current design method and future technology development on this subject is dicussed in this paper.

An Uncertainty Analysis of Calculating Life Cycle Maintenance and Energy Costs for Technical Proposals (기술제안입찰을 위한 유지관리 및 에너지 비용 산출방식의 불확실성 분석)

  • Chung, Sung Young;Kim, Sean Hay
    • Korean Journal of Construction Engineering and Management
    • /
    • v.19 no.5
    • /
    • pp.3-9
    • /
    • 2018
  • Although Life Cycle Cost (LCC) must be evaluated by experts, sometimes it may not allow a sufficient time for even the experienced LCC expert to make rational decisions. Therefore, it often ends with relatively comparing the final numbers. We have broken down 110 technical proposals that are actually bade and accepted for large construction projects, and then have analyzed the uncertainty of Maintenance and Energy (M&E) cost during building life cycle, which turns out be the most volatile factor in uncertainty of LCC. Also we suggest "Value Engineering Index (VEI)" - the reduced M&E cost that is normalized by the reduced first cost. It is analyzed that the most uncertain factors of the M&E cost include repair and replacement term differing from each project, duplicated repair and replacement, non-standard repair items, and site-specific energy cost. Eventually we propose a VEI population with a mean of 1.38 and a standard deviation of 1.19, which is obtained by individually and exclusively applying the uncertain factors of the M&E cost to the 35 standard sample of technical proposals. The LCC evaluators may be able to use the VEI population as the benchmark to select the technical proposal with the most reasonable LCC among many others in two suggested manners; the one is to deterministically calculate the probability of single VEIs, and the other is to stochastically calculate the probability of the VEIs where uncertainty is quantified.

A Study on Improvement of Contract Regulations for Adjusting Contract Amount in Public Construction - Focused on examples of price fluctuation classification - (공공건설 계약금액 조정의 계약예규 개선방안 연구 - 물가변동 분류 사례 중심으로 -)

  • Lee, Wonjei;Shin, Manjoong
    • Korean Journal of Construction Engineering and Management
    • /
    • v.21 no.4
    • /
    • pp.82-89
    • /
    • 2020
  • Article 64 of the Enforcement Decree of the National Contract Act The requirement of the pre-amendment statute related to the adjustment of the contract price was 5% or more of the price fluctuation rate from the date of the contract. However, the meeting requirement was changed from 5% or more to 3% or more from the date of signing of the Presidential Decree No. 19035 to 2005. 9. 8. The method of adjusting the contract amount was also changed to determine the contractor's desired adjustment method at the time of contract. Alleviating these requirements and revising the empowerment of contract partners is intended to prevent difficulties in achieving smooth objectives by applying to public construction contractors without unfairly benefiting or unfavorable to contract partners. Even if the standards are relaxed and the rights are secured as described above, if the existing provisions for the adjustment of price fluctuation are applied, unlike the original purpose of the government system, the Korea Bank's price economic statistics classification method and the contract construction classification criteria applied in public construction work Due to the inconsistency, it can be seen that the amount of adjustment for price fluctuation by construction type is excessive and underestimated. Therefore, the purpose of this study is to analyze problems through cases and to make appropriate construction cost adjustment through improvement measures.

A Pilot Study on Development of Market-Driven Construction Cost-Reference (민간 중심 BOTTOM-UP 방식 건설공사 단가 수립 체계 개발을 위한 기초 연구)

  • Kim, Kyeong-Baek;Lee, Ga-Yeoun;Kim, Sang-Bum
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.2
    • /
    • pp.151-159
    • /
    • 2021
  • Cost information in the Korean construction industry is mainly controlled by the government agencies. However, there have been wild-spread speculations among participants on the adequacy of these unit prices and difference with the actual market condition. Korean public-led unit prices are developed using mainly a top-down approach by a few designated public institutions. Due to the rapid fluctuations in market prices and high-volume of information, it is impossible for a few public institutions to properly consider market conditions. However, there are almost none private cost reference while many are available in other countries to supplement the public cost references. Needs for private cost references have recognized, and this study can be seen as a pilot study to support them. This study attempts to identify the problem areas of Korean cost references and to provide guidance by benchmarking other countries. This study has confirmed the need of developing market-driven cost references by employing a bottom-up approach in which a large number of various construction participants are fostered to provide their own cost information and share with others. It is envisioned that this study provides foundations for further study on the development on-line construction market platform based on abundant and appropriate cost information.

A study on the normal project duration development for the construction of multi-utility tunnel in the existing city (기존시가지의 공동구 건설을 위한 표준공기 산정에 대한 연구)

  • Lee, Seong-Won;Lee, Pil-Yoon;Byun, Yo-Seph;Cho, Choong-Yeun;Lee, Min-jae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.12
    • /
    • pp.677-685
    • /
    • 2018
  • In construction, schedule management is the basic but important step, for the effective schedule management, the preparation of the reasonable schedule table should be prioritized. In the design stage, the optimal construction period can be selected through comparison of various conditions and construction methods considering weather conditions and site characteristics. But, At the planning phase, it is difficult to select the effective method and calculate the proper construction period by the basic data(D/B) analysis. In this paper, the construction method considering characteristics of each type and conditions of existing city was selected. For the reasonable duration calculation, we analyzed the unit schedule for RC method for open type and Shield TBM method for tunnel type. The normal project duration of construction assuming of 1,200m of extension and every 200m of ventilation was prepared by integrating each unit schedule. It was analyzed that it took 893 days for the open type and 616 days for the tunnel type. The results of this study will help to make type selection and normal project duration more easily in the planning phase. If it is linked to the design stage, it will be easy to estimate the process and construction cost.

Development of a Safety and Health Expense Prediction Model in the Construction Industry (건설업 산업안전보건관리비 예측 모델 개발 - 일반건설공사(갑)의 공사비 50억미만 공사를 대상으로 -)

  • Yeom, Dong Jun;Lee, Mi Young;Oh, Se Wook;Han, Seung Woo;Kim, Young Suk
    • Korean Journal of Construction Engineering and Management
    • /
    • v.16 no.6
    • /
    • pp.63-72
    • /
    • 2015
  • The importance of the appropriate use and procurement of Safety and Health Expense has been increasing along with the recent increase of construction projects in height, size and complexity. However, the current standards for deducting the Safety and Health Expense have shown limitations in applying the properties and environment of the construction project due to its Safety and Health Expense Rate's classification method. Therefore, the purpose of this study is to develop a prediction model for the Safety and Health Expense that enables the consideration of different environment and properties of construction projects. The study uses multiple regression analysis to analyze the Safety and Health Expense of Ordinary(A) of less than 0.5 billion WON. The research results have shown that the use of multiple regression analysis reduces the error rate to 4.38% which the current standard calculation method have shown 18.48%. Therefore, the use of the suggested model provides reliable Safety and Health Expense prediction values that considers the properties of the project. It is expected that the results of this study contributes to the effective safety management by providing the appropriate amount of Safety and Health Expense to the project. In this study, only projects of less than 5 billion WON have been considered in the analysis. Therefore, more data is required for future studies to suggest an overall Safety and Health Expense predict ion model that covers the whole construction industry.

An Evaluation of Allowable Bearing Capacity of Weathered Rock by Large-Scale Plate-Bearing Test and Numerical Analysis (대형평판재하시험 및 수치해석에 의한 풍화암 허용지지력 평가)

  • Hong, Seung-Hyeun
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.10
    • /
    • pp.61-74
    • /
    • 2022
  • Considering that the number of cases in which a structure foundation is located on weathered rock has been increasing recently, for adequate design bearing capacity of a foundation on weathered rock, allowable bearing capacities of such foundations in geotechnical investigation reports were studied. With reference to the study results, the allowable bearing capacity of a foundation on weathered rock was approximately 400-700 kN/m2, with a large variation, and was considered a conservative value. Because the allowable bearing capacity of the foundation ground is an important index in determining the foundation type in the early design stage, it can have a significant influence on the construction cost and period according to the initial decision. Thus, in this study, six large-scale plate-bearing tests were conducted on weathered rock, and the bearing capacity and settlement characteristics were analyzed. According to the test results, the bearing capacities from the six tests exceeded 1,500 kN/m2, and it shows that the results are similar with the one of bearing capacity formula by Pressuremeter tests when compared with the various bearing capacity formula. In addition, the elastic modulus determined by the inverse calculation of the load-settlement behavior from the large-scale plate-bearing tests was appropriate for applying the elastic modulus of the Pressuremeter tests. With consideration of the large-scale plate-bearing tests in this study and other results of plate-bearing tests on weathered rock in Korea, the allowable bearing capacity of weathered rock is evaluated to be over 1,000 kN/m2. However, because the settlement of the foundation increases as the foundation size increases, the allowable bearing capacity should be restrained by the allowable settlement criteria of an upper structure. Therefore, in this study, the anticipated foundation settlements along the foundation size and the thickness of weathered rocks have been evaluated by numerical analysis, and the foundation size and ground conditions, with an allowable bearing capacity of over 1,000 kN/m2, have been proposed as a table. These findings are considered useful in determining the foundation type in the early foundation design.

A Study on Risk Factor Identification by Specialty Construction Industry Sector through Construction Accident Cases : Focused on the Insurance Data of Specialty Construction Worker (건설재해사례 분석에 의한 전문건설업종별 위험요인 탐색 : 전문건설업 근로자 공제자료를 중심으로)

  • Lee, Young Jai;Kang, Seong Kyung;Yu, Hwan
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.24 no.1
    • /
    • pp.45-63
    • /
    • 2019
  • The number of domestic construction company is expanding every year while the construction workers' exposure to disaster risk is increasing due to technological advancements and popularity of high-rise buildings. In particular, the industry faces greater fatalities and severe large scale accidents because of construction industry characteristics including influx of foreign workers with different language and culture, large number of aged workers, outsourcing, high place work, heavy machine construction. The construction industry is labor-intensive, which is to be completed under given timeline and consists of unique working environment with a lot of night shifts. In addition, when a fixed construction budget is not secured, there is less investment in safety management resulting in poor risk management at the construction site. Taking account that the construction industry has higher accident risk rate and fatality rate, risky and unique working environment, and various labor pool from foreign to aged workers, preemptive safety management through risk factor identification is a mandatory requirement for the construction industry and site. The study analyzes about 8,500 cases of construction accidents that occurred over the past 10 years and identified risk factor by construction industry sector to secure a systematic insight for risk management. Based on interrelation analysis between accident types, work types, original cause materials and assailing materials, there is correlation between each analysis factor and work industry. Especially for work types, there is great correlation between work tasks and industry type. For reinforced concrete and earthwork are among the most frequent types of accidents, and they are not only high in frequency of accidents, but also have a high risk in categories of occurrence.