• Title/Summary/Keyword: 적응 학습

Search Result 1,173, Processing Time 0.03 seconds

Application of an Adaptive Incremental Classifier for Streaming Data (스트리밍 데이터에 대한 적응적 점층적 분류기의 적용)

  • Park, Cheong Hee
    • Journal of KIISE
    • /
    • v.43 no.12
    • /
    • pp.1396-1403
    • /
    • 2016
  • In streaming data analysis where underlying data distribution may be changed or the concept of interest can drift with the progress of time, the ability to adapt to concept drift can be very powerful especially in the process of incremental learning. In this paper, we develop a general framework for an adaptive incremental classifier on data stream with concept drift. A distribution, representing the performance pattern of a classifier, is constructed by utilizing the distance between the confidence score of a classifier and a class indicator vector. A hypothesis test is then performed for concept drift detection. Based on the estimated p-value, the weight of outdated data is set automatically in updating the classifier. We apply our proposed method for two types of linear discriminant classifiers. The experimental results on streaming data with concept drift demonstrate that the proposed adaptive incremental learning method improves the prediction accuracy of an incremental classifier highly.

Goods Recommendation Sysrem using a Customer’s Preference Features Information (고객의 선호 특성 정보를 이용한 상품 추천 시스템)

  • Sung, Kyung-Sang;Park, Yeon-Chool;Ahn, Jae-Myung;Oh, Hae-Seok
    • The KIPS Transactions:PartD
    • /
    • v.11D no.5
    • /
    • pp.1205-1212
    • /
    • 2004
  • As electronic commerce systems have been widely used, the necessity of adaptive e-commerce agent systems has been increased. These kinds of adaptive e-commerce agents can monitor customer's behaviors and cluster thou in similar categories, and include user's preference from each category. In order to implement our adaptive e-commerce agent system, in this paper, we propose an adaptive e-commerce agent systems consider customer's information of interest and goodwill ratio about preference goods. Proposed system build user's profile more accurately to get adaptability for user's behavior of buying and provide useful product information without inefficient searching based on such user's profile. The proposed system composed with three parts , Monitor Agent which grasps user's intension using monitoring, similarity reference Agent which refers to similar group of behavior pattern after teamed behavior pattern of user, Interest Analyzing Agent which personalized behavior DB as a change of user's behavior.

Optimization of Structure-Adaptive Self-Organizing Map Using Genetic Algorithm (유전자 알고리즘을 사용한 구조적응 자기구성 지도의 최적화)

  • 김현돈;조성배
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.3
    • /
    • pp.223-230
    • /
    • 2001
  • Since self-organizing map (SOM) preserves the topology of ordering in input spaces and trains itself by unsupervised algorithm, it is Llsed in many areas. However, SOM has a shortcoming: structure cannot be easily detcrmined without many trials-and-errors. Structure-adaptive self-orgnizing map (SASOM) which can adapt its structure as well as its weights overcome the shortcoming of self-organizing map: SASOM makes use of structure adaptation capability to place the nodes of prototype vectors into the pattern space accurately so as to make the decision boundmies as close to the class boundaries as possible. In this scheme, the initialization of weights of newly adapted nodes is important. This paper proposes a method which optimizes SASOM with genetic algorithm (GA) to determines the weight vector of newly split node. The leanling algorithm is a hybrid of unsupervised learning method and supervised learning method using LVQ algorithm. This proposed method not only shows higher performance than SASOM in terms of recognition rate and variation, but also preserves the topological order of input patterns well. Experiments with 2D pattern space data and handwritten digit database show that the proposed method is promising.

  • PDF

A Study on the Hardware Implementation of Competitive Learning Neural Network with Constant Adaptaion Gain and Binary Reinforcement Function (일정 적응이득과 이진 강화함수를 가진 경쟁학습 신경회로망의 디지탈 칩 개발과 응용에 관한 연구)

  • 조성원;석진욱;홍성룡
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.7 no.5
    • /
    • pp.34-45
    • /
    • 1997
  • In this paper, we present hardware implemcntation of self-organizing feature map (SOFM) neural networkwith constant adaptation gain and binary reinforcement function on FPGA. Whereas a tnme-varyingadaptation gain is used in the conventional SOFM, the proposed SOFM has a time-invariant adaptationgain and adds a binary reinforcement function in order to compensate for the lowered abilityof SOFM due to the constant adaptation gain. Since the proposed algorithm has no multiplication operation.it is much easier to implement than the original SOFM. Since a unit neuron is composed of 1adde $r_tracter and 2 adders, its structure is simple, and thus the number of neurons fabricated onFPGA is expected to he large. In addition, a few control signal: ;:rp sufficient for controlling !he neurons.Experimental results show that each componeni ot thi inipiemented neural network operates correctlyand the whole system also works well.stem also works well.

  • PDF

Contents Adaptive 2D FIR Filters Design for Subpixel Rendering (부화소 랜더링을 위한 내용적응형 2 차원 필터 설계)

  • Nam, Yeon Oh;Choi, Dong Yoon;Song, Byung Cheol
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2014.06a
    • /
    • pp.107-108
    • /
    • 2014
  • 부화소 기반 영상 축소기법은 각각의 부화소를 조절함으로써 픽셀 기반 영상 축소기법보다 해상도를 향상시킬 수 있는 방법이다. 그러나 부화소에 의한 해상도의 증가는 종종 색상정보의 왜곡을 발생시킨다. 부화소 랜더링의 주요과제는 선명도를 유지함과 동시에 색조왜곡현상을 억제하는 것이다. 선행연구들은 부화소랜더링을 위해 1 차원 혹은 2 차원 필터를 최적화 하였지만, 지역적인 특성을 고려하지 않았기 때문에 출력영상의 화질이 저하되는 현상이 발생한다. 본 논문은 위와 같은 문제를 해결하기 위해 내용적응형 2D FIR 필터를 제작방법을 제안한다. 제안필터는 충분한 수의 저해상도 패치와 고해상도 패치 쌍을 이용하여 임의의 고해상도 패치로부터 고화질의 저해상도 패치를 만들기 위한 최적의 내용적응형 2D FIR 필터를 학습한다. 학습된 필터에 의한 실험결과 제안하는 필터가 종례기법들 보다 색조왜곡현상이 현저히 줄어들고, 출력영상의 선명도를 유지함을 보여준다.

  • PDF

A Study on Noisy Speech Recognition Using Discriminative Training for PMC Algorithm (PMC 방식에서의 분별적 학습을 이용한 잡음 음성인식에 관한 연구)

  • 정용주
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.2
    • /
    • pp.83-89
    • /
    • 2000
  • In this paper, we proposed a discriminative adaptation method for PMC algorithm and achieved improved speech recognition rate. For the adaptation, we adopted modified PMC(MPMC) which is a variant of PMC and discriminatively adapted the association factor for each mixture of the HMM in the MPMC. From the recognition experiments, the proposed method showed better recognition rate than the conventional PMC. Also, compared with STAR algorithm which is another model parameter compensation method, the proposed method showed superior performance when the SNR is very low and the adaptation data is not sufficient.

  • PDF

The Adaptive Congestion Control Using Neural Network in ATM network (ATM 망에서 뉴럴 네트워크를 이용한 적응 폭주제어)

  • Lee, Yong-Il;Kim, Yung-Kwon
    • Journal of IKEEE
    • /
    • v.2 no.1 s.2
    • /
    • pp.134-138
    • /
    • 1998
  • Because of the statistical fluctuations and the high 'time-variability' nature of the traffic, managing the resources of the network require highly dynamic techniques with minimal Intervention and reaction times, and adaptive and learning capabilities. The neural networks normalizes the ATM cell arrival rate and queue length and has the adaptive learning algorithm, and experimentally investigated the method to prevent the congestion generated in ATM networks.

  • PDF

A Novel Adaptive Controller for Periodic Disturbances Rejection (주기적 외란을 제거하기 위한 효율적인 적응제어기)

  • 나희승;박영진
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1994.04a
    • /
    • pp.22-27
    • /
    • 1994
  • 본 논문의 목적은 피이드백 제어시스템에서 주기적 외란(periodic disturbances),d$_{\omega}$, 이 출력센서에 감지될 경우, 이를 제거하기 위한 새로운 적응제어기(adaptive controller)를 설계하는 것이다. 2장에서는 주기적 외란을 제거하기 위한 방법으로 많이 사용되어 온 피이드백 제어기 (feedback controller)와 피이드포워드 제어기 (feedforward controller)를 설명한다. 3장에서는 적응 피이드포워드 제어기가 페루프 전달함수를 변경시키는 점에서 피이드백 제어기와 동일함을 보이고, 전달함수를 변경시키지 않아 페루프시스템의 강건성을 저하시키지 않는 효율적인 피이드포워드 제어기를 설계한다. 4장에서는 제안된 피이드포워드 제어기의 학습알고리즘을 유도한다. 5장에서는 모의 실험을 통하여 제안한 피이드포워드 제어기 및 학습 알고리즘의 효율성을 검증하기로 한다.

  • PDF

An Adaptive Network Fuzzy Inference System for the Fault Types Classification in the Distribution Lines (배전선로의 고장유형 판별을 위한 적응형 퍼지추론 시스템)

  • 정호성;신명철
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.2
    • /
    • pp.101-108
    • /
    • 2001
  • 본 논문에서는 배전선로에서 발생하는 여러 고장유형을 판별하기 위해서 적응형 퍼지추론 시스템을 적용하는 새로운 기법을 제시하였다. 배전선로의 고장과 고장유사현상 데이터를 추출하기 위해서 EMTP를 이용하여 RL부하, 아크로부하, 컨버터부하가 있는 배전계통을 구성하고 여러 형태의 고장과 고장유사현상에 대해 시뮬레이션을 하였다. 이를 통해 얻은 전류 파형으로부터 기본파성분, 영상분전류, 짝수 고조파성분의 합, 홍수 고조파성분의 합, 그리고 비정규 고조파성분의 합의 5개의 입력변수를 추출하고 학습을 통해서 각 입력변수의 소속함수의 소속도를 자동으로 결정하였다. 이 적응형 퍼지추론 시스템을 이용한 기법을 평가하기 위해서 학습시와 다른 고장상황을 모의하여 얻은 데이터와 실증시험 데이터를 이용하였다. 결과적으로 제안한 기법은 배전선로에서 발생하는 고장유형을 빠르고 정확하게 판별할 수 있었다.

  • PDF

Topic-Specific Mobile Web Content Adaptation through Learning (학습을 통한 주제기반 모바일 웹 콘텐츠 적응화)

  • Lee Eunshil;Kang Jinbeom;Yang Jaeyoung;Choi Chongmin
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.11b
    • /
    • pp.682-684
    • /
    • 2005
  • 본 논문에서는 시각적 웹페이지 세그멘테이션 기법을 웹 콘텐츠 변환에 적용하고 이를 사용하여 이동기기에 적합한 개인화 기법을 제안한다. 웹페이지를 사람이 시각적으로 구분하는 것과 유사한 블록으로 나누고, 각 블록의 속성을 파악하여 불필요한 블록은 필터링한다. 그리고 실제 내용을 나타내는 블록의 주제를 추출하여 휴대장치에 제공하는 효율적인 콘텐츠 적응화 기법을 제시한다. 또한 개인화된 콘텐츠를 제공하기 위해 적응화 과정에서 학습을 기반으로 사용자가 선호하는 정보만을 제공할 수 있는 개인화 기법을 제시한다.

  • PDF