• Title/Summary/Keyword: 적응 학습

Search Result 1,173, Processing Time 0.027 seconds

A Study on the Adaptive Effect of Programming Languages Class by Applying Orientation Program for Returning Students (사전교육 프로그램을 활용한 복학생 프로그래밍 언어 수업 적응 효과 연구)

  • Kim, Kyong-Ah;Ahn, You Jung
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2017.07a
    • /
    • pp.356-357
    • /
    • 2017
  • 프로그래밍 언어 수업은 단계별 학습 특성으로 인해 이전 단계를 이해하지 못하면 그 다음 단계로 넘어가는데 어려움이 많아, 학습 공백기를 갖는 복학생들에게는 복학 후 수업 적응에 보다 큰 어려움이 있다. 이러한 어려움을 극복하고 수업 적응 효과를 높이기 위해서는 수업 시작 전 이전 수업 내용 및 운영 방법 등을 알 수 있는 적절한 기회와 방법이 필요하다. 본 연구에서는 사전교육 프로그램을 프로그래밍 수업에 적용한 후 설문조사를 실시하여 사전교육 프로그램이 복학생들의 프로그래밍 언어 수업에 대한 적응 효과 및 만족도를 높이는 긍정적인 효과가 있었음을 조사 분석하였다.

  • PDF

Design of Wavelet Neural Network Based Indirect Adaptive Controller Using EKF Training Method (확장 칼만 학습 알고리듬을 이용한 웨이블릿 신경 회로망 기반 간접 적응 제어기 설계)

  • Kim, Kyung-Ju;Oh, Joon-Seop;Choi, Yoon-Ho;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.361-363
    • /
    • 2004
  • 시간 및 주파수 특성 분석이 용이한 웨이블릿을 신경회로망에 적용시킨 웨이블릿 신경 회로망의 파라미터 학습 방법에는 오차 역전파 알고리듬 및 유선 알고리듬 등 여러 가지 방법이 있으나 이러한 학습 방법들은 수렴 시간이 오래 걸리는 단점을 가진다. 따라서 본 논문에서는 웨이블릿 신경 회로망의 최적 파라미터를 결정하기 위한 학습 방법으로 일반적으로 비선형 시스템 추정에 주로 사용되는 확장 칼만 필터 알고리듬을 적용한 신경회로망을 제안한다. 또한 제안된 학습 알고리듬을 이용한 웨이블릿 신경 회로망으로 간접 적응 제어기를 설계하여 연속 시간 혼돈 시스템인 Duffing 시스템의 제어에 적용함으로써 확장 칼만 필터 학습 알고리듬을 적용한 웨이블릿 신경 회로망 모델의 우수성을 보인다.

  • PDF

Learning Robot Behaviors by Evolving Genetic Programs (유전자 프로그램의 진화를 이용한 자율이동로봇의 행동 학습)

  • 이광주;장병탁
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.04b
    • /
    • pp.259-261
    • /
    • 2000
  • 주어진 환경에 대한 특별한 사전 지식 없이 그 환경에 적응할 수 있는 자율이동로봇을 설계할 때는 우선 특정한 상황에서만 유효한 가정들을 될 수 있는 대로 배제하여야 한다. 본 논문에서는 이러한 적응 능력을 갖춘 자율이동로봇을 설계하기 위한 일환으로 유전자 프로그램을 이용하여 로봇의 제어기를 표현하고, 이를 진화하여 로봇이 현재 자신의 주변에서 얻을 수 있는 정보에만 기초하여 목표물을 찾아가는 행동 규칙을 학습하도록 하였다. 로봇은 현재 자신이 놓여있는 환경에 대한 지도를 작성하지 않은 채 현재 자신의 주변에서 얻을 수 있는 지역적인 정보만으로 특정 목표물을 찾아가도록 학습된다. 로봇은 먼저 단층 퍼셉트론을 사용하여 주어진 공간내의 장애물과 목표물을 인지하도록 학습된다. 그 이후 학습된 퍼셉트론을 유전자 프로그램의 함수 노드로 사용하여 트리를 진화시켰다. Khepera 시뮬레이터를 이용한 실험 결과, 로봇은 제한된 지역 정보만을 사용하여 목표물을 찾아가는 행동 규칙을 매우 안정적으로 학습할 수 있었다.

  • PDF

DAKS: A Korean Sentence Classification Framework with Efficient Parameter Learning based on Domain Adaptation (DAKS: 도메인 적응 기반 효율적인 매개변수 학습이 가능한 한국어 문장 분류 프레임워크)

  • Jaemin Kim;Dong-Kyu Chae
    • Annual Conference of KIPS
    • /
    • 2023.05a
    • /
    • pp.678-680
    • /
    • 2023
  • 본 논문은 정확하면서도 효율적인 한국어 문장 분류 기법에 대해서 논의한다. 최근 자연어처리 분야에서 사전 학습된 언어 모델(Pre-trained Language Models, PLM)은 미세조정(fine-tuning)을 통해 문장 분류 하위 작업(downstream task)에서 성공적인 결과를 보여주고 있다. 하지만, 이러한 미세조정은 하위 작업이 바뀔 때마다 사전 학습된 언어 모델의 전체 매개변수(model parameters)를 학습해야 한다는 단점을 갖고 있다. 본 논문에서는 이러한 문제를 해결할 수 있도록 도메인 적응기(domain adapter)를 활용한 한국어 문장 분류 프레임워크인 DAKS(Domain Adaptation-based Korean Sentence classification framework)를 제안한다. 해당 프레임워크는 학습되는 매개변수의 규모를 크게 줄임으로써 효율적인 성능을 보였다. 또한 문장 분류를 위한 특징(feature)으로써 한국어 사전학습 모델(KLUE-RoBERTa)의 다양한 은닉 계층 별 은닉 상태(hidden states)를 활용하였을 때 결과를 비교 분석하고 가장 적합한 은닉 계층을 제시한다.

A Trend of Source-free Domain Adaptation (소스-프리 도메인 적응 연구동향)

  • Uiwon Hwang
    • Annual Conference of KIPS
    • /
    • 2024.05a
    • /
    • pp.888-890
    • /
    • 2024
  • 딥러닝의 발전으로 인공지능의 실세계 응용이 다방면으로 확대되고 있다. 하지만 학습에 사용된 소스 도메인 데이터와 테스트에 사용된 타겟 도메인 데이터 간의 분포 차이로 인해 모델의 성능이 크게 저하될 수 있다. 이를 극복하기 위해 도메인 적응 방법이 제안되었으나, 소스 도메인 데이터에 접근할 수 없는 경우 적용에 한계가 있다. 이에 대응하여 소스 데이터가 필요 없는 소스-프리 도메인 적응 기술과 실시간으로 적응하는 테스트 시간 적응 방법이 연구되고 있다. 본 논문은 최신 소스-프리 도메인 적응 및 테스트 시간 적응 방법의 동향을 파악하고 각 방법론의 기술적 특징을 분석하고자 한다.

Selective Attentive Learning for Fast Speaker Adaptation in Multilayer Perceptron (다층 퍼셉트론에서의 빠른 화자 적응을 위한 선택적 주의 학습)

  • 김인철;진성일
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.48-53
    • /
    • 2001
  • In this paper, selectively attentive learning method has been proposed to improve the learning speed of multilayer Perceptron based on the error backpropagation algorithm. Three attention criterions are introduced to effectively determine which set of input patterns is or which portion of network is attended to for effective learning. Such criterions are based on the mean square error function of the output layer and class-selective relevance of the hidden nodes. The acceleration of learning time is achieved by lowering the computational cost per iteration. Effectiveness of the proposed method is demonstrated in a speaker adaptation task of isolated word recognition system. The experimental results show that the proposed selective attention technique can reduce the learning time more than 60% in an average sense.

  • PDF

A Time Series Forecasting Using Neural Network by Modified Adaptive learning Rates and Initial Values (적응적 학습방법과 초기값의 개선에 의한 신경망 모형을 이용한 시계열 예측)

  • Yoon, Yeo-Chang;Lee, Sung-Duck
    • The Transactions of the Korea Information Processing Society
    • /
    • v.5 no.10
    • /
    • pp.2609-2614
    • /
    • 1998
  • In this work, we consider the forecasting performance between nearal network and Box-Jenkins method for time series data. A modified learning process is developed for neural network approach at time eries data, ie, properly adaptive learning rates selecting by orthogonal arrays and dynamic selecting of initial values using Easton's cotroller box. We can obtain good starting points with dynamic graphics approach. We use real data sets for this study : the Wolf yearly sunspot numbers between 1700 and 1988.

  • PDF

Indirect Adaptive Control of Nonlinear Systems Using a EKF Learning Algorithm Based Wavelet Neural Network (확장 칼만 필터 학습 방법 기반 웨이블릿 신경 회로망을 이용한 비선형 시스템의 간접 적응 제어)

  • Kim Kyoung-Joo;Choi Yoon Ho;Park Jin Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.6
    • /
    • pp.720-729
    • /
    • 2005
  • In this paper, we design the indirect adaptive controller using Wavelet Neural Network(WNN) for unknown nonlinear systems. The proposed indirect adaptive controller using WNN consists of identification model and controller. Here, the WNN is used in both Identification model and controller The WNN has advantage of indicating the location in both time and frequency simultaneously, and has faster convergence than MLPN and RBFN. There are several training methods for WNN, such as GD, GA, DNA, etc. In this paper, we present the Extended Kalman Filter(EKF) based training method. Although it is computationally complex, this algorithm updates parameters consistent with previous data and usually converges in a few iterations. Finally, ore illustrate the effectiveness of our method through computer simulations for the Buffing system and the one-link rigid robot manipulator. From the simulation results, we show that the indirect adaptive controller using the EKF method has better performance than the GD method.

Web-Based Teaching-Learning System of Mobile Agent (이동 에이전트를 활용한 웹기반 교수-학습시스템)

  • Ko, Ju-Yeon;Park, Sun-Ju
    • Journal of The Korean Association of Information Education
    • /
    • v.5 no.2
    • /
    • pp.216-229
    • /
    • 2001
  • A more interactive teaching-learning system is increasingly necessary in the consumer-oriented environment of distance education. This article would like to suggest a more spontaneous system which is learners at various levels. The suggested system keynotes its efficiency with the introduction of a "mobile agent" concept through which learners are able to network and complete their assignments despite their dispersed environments. This article also suggests some managerial techniques for the systematic management of agent-based learners possessing diverse characteristics. Through this study, we expect more highly effect by offer data adapted to learning goal to learner's ability, get out of uniform web-based teaching-learning.

  • PDF

Echo Noise Robust HMM Learning Model using Average Estimator LMS Algorithm (평균 예측 LMS 알고리즘을 이용한 반향 잡음에 강인한 HMM 학습 모델)

  • Ahn, Chan-Shik;Oh, Sang-Yeob
    • Journal of Digital Convergence
    • /
    • v.10 no.10
    • /
    • pp.277-282
    • /
    • 2012
  • The speech recognition system can not quickly adapt to varied environmental noise factors that degrade the performance of recognition. In this paper, the echo noise robust HMM learning model using average estimator LMS algorithm is proposed. To be able to adapt to the changing echo noise HMM learning model consists of the recognition performance is evaluated. As a results, SNR of speech obtained by removing Changing environment noise is improved as average 3.1dB, recognition rate improved as 3.9%.