사람의 감정은 다양한 요소에 의해서 드러난다. 말, 행동, 표정, 옷차림 등등. 하지만 사람은 자신의 감정을 숨길 줄 안다. 따라서 어느 한 가지만으로는 쉽게 그 감성을 짐작할 수 없다. 우리는 이러한 문제를 해결하고 보다 진솔한 사람의 감성을 파악하기 위해 행동과 표정에 주의를 기울이기로 하였다. 행동과 표정은 부단한 노력과 훈련이 없으면 쉽게 감출 수 없기 때문이다. 본 논문에서는 딥러닝 방법을 통해 적은 데이터를 가지고 점진적으로 사람의 행동과 표정을 학습하여 두 가지 결과의 조합을 통해 사람의 감성을 추측하는 알고리즘을 제안한다. 이 알고리즘을 통해 우리는 보다 종합적으로 사람의 감성을 파악할 수 있다.
얼굴 표정을 애니메이션하는 것은 얼굴 구조의 복잡성과 얼굴 표면의 섬세한 움직임으로 인해 컴퓨터 애니메이션 분야에서 가장 어려운 분야로 인식되고 있다. 최근 3D 애니메이션, 영화 특수효과 그리고 게임 제작시 모션 캡처 시스템(Motion Capture System)을 통하여 실제 인간의 동작 및 얼굴 표정을 수치적으로 측정해내어 이를 실제 애니메이션에 직접 사용함으로써 막대한 작업시간 및 인력 그리고 자본을 획기적으로 줄이고 있다. 그러나 기존의 모션 캡처 시스템은 고속 카메라를 이용함으로써 가격이 고가이고 움직임 추적에서도 여러 가지 문제점을 가지고 있다. 본 논문에서는 일반 저가의 카메라와 신경회로망 및 영상처리기법을 이용하여 얼굴 애니메이션용 모션 캡처 시스템에 적응할 수 있는 경제적이고 효율적인 얼굴 움직임 추적기법을 제안한다.
본 논문에서는 인간과 로봇의 상호작용을 위해 감정에 기반한 감정 처리 모델을 설계하였다. 감정 재현 기술은 사용자에게 친근감을 주기 위해 로봇 시스템이 제스처, 표정을 통하여 사람이나 동물의 감성과 동작을 표현하는 분야이다. 로봇이 감정을 표현하는 문제에는 많은 심리학적, 해부학적, 공학적 문제가 관련된다. 여러가지 애매모호한 상황임에 불구하고 심리학자인 Ekman과 Friesen에 의해 사람의 여섯 가지 기본 표정이 놀람, 공포, 혐오, 행복감, 두려움, 슬픔은 문화에 영향을 받지 않고 공통적으로 인식되는 보편성을 가지고 있는 것으로 연구됐다. 사람의 행동에 대한 로봇의 반응이 학습되어 감정모델이 결정되고, 그 결과가 행동결정에 영향을 주어 로봇의 행동에 반영되도록 하였다. 본 논문에서는 인간과 로봇과의 상호작용을 통해 정보를 축적하고 인간의 반응에 적응해나 갈 수 있는 감정 처리 모델을 제안한다.
본 연구는 만 1세 영아를 둔 어머니가 인식하는 어린이집 초기 적응과정 및 적응프로그램에 관하여 서울시에 거주하며 첫 아이가 18개월 또는 20개월에 어린이집에 처음 입소한 4명의 어머니를 대상으로 한 사례연구이다. 집단 및 개별면담을 통해 수집된 자료를 분석한 결과는 다음과 같다. 첫째, 둘째 임신 또는 입소통보전화를 받고 갑작스레 어린이집 입소를 결정하게 되었으며 자녀의 입소를 위해 어린이집 첫 방문 시 30분 내외의 짧은 시간 어머니가 본 교사의 인상과 말투, 표정 등이 어린이집을 선택하는데 큰 영향을 주었다. 분리불안 행동을 보이는 영아뿐 아니라 어머니도 적응과정을 겪었다. 어머니와 교사의 소통과 노력을 통해 어머니들은 영아가 적응해나감을 느낄 수 있었다. 둘째, 만 1세 영아의 적응과정을 통해 어머니가 인식한 적응프로그램의 차이에 대해서는 기관별로 프로그램 안내 및 실행에 있어 큰 차이를 보였다. 본 연구의 참여자들은 어린이집 유형과 상관없이 보편적이고 통합적인 적응프로그램이 필요하다고 생각하고 있었다. 이러한 연구결과를 바탕으로 국가수준의 만 1세 영아를 위한 어린이집 적응프로그램을 개발하는데 기초자료가 될 수 있을 것으로 기대한다.
본 논문에서는 영상의 중심이동과 상호정보 추정에 의한 효과적인 얼굴인식 기법을 제안하였다. 여기서 중심이동은 영상의 1차 모멘트에 의해 계산된 중심좌표로 얼굴영상을 이동하는 것이며, 이는 인식에 불필요한 배경을 배제시킴으로써 인식성능을 개선시키기 위함이다. 상호정보 추정은 상관관계를 나타내는 척도로 영상간의 유사성을 효과적으로 측정하기 위함이다. 특히 영상의 상호정보 추정을 위한 확률밀도함수 계산에 동일한 량의 샘플분할을 이용한 적응분할의 추정 방법을 이용함으로써 영상 상호간의 종속성을 더욱 더 정확하게 구하였다. 제안된 기법을 64*64 픽셀의 48장(12명*4장) 얼굴영상을 대상으로 실험한 결과, 제안된 기법은 중심이동을 거치지 않는 단순히 상호정보 추정만을 이용하는 기법보다 우수한 인식성능(인식률, 인식속도)이 있음을 확인하였다. 또한 얼굴의 표정, 위치, 그리고 각도 등의 변화에도 매우 강건한 인식성능이 있음을 확인하였다.
본 논문에서는 기존 LDP 코드의 문제점을 보완하고 화소의 색상 정보와 밝기 정보, 에지 방향 정보, 그리고 에지 반응 크기 정보를 포함할 수 있는 새로운 LDP를 제안한다. 제안된 방법은 얼굴색 정보를 포함하기 위해 기존 LDP 코드를 줄이는 방법을 제안하고 그 결과를 분석하였다. 새로운 LDP 코드는 기존 LDP 코드와 달리 6비트로 표현함으로써 나머지 2비트에 필요로 하는 정보를 포함할 수 있도록 하였으며, 기존 LDP 코드에 비해서 잡음과 환경 변화에 효과적으로 적응할 수 있도록 하였다. 실험 결과 제안된 LDP 코드는 기존 방법들에 비해 높은 인식률 향상과 얼굴 표정인식 결과에서도 효과적임을 보여주었다.
정확하게 피부 색상을 검출하는 방법은 얼굴 인식 및 추적, 표정 인식, 성인 영상 검출, 헬스케어 등의 다양한 분야에서 매우 유용하게 사용된다. 본 논문에서는 일반광과 실내 조명이 더해진 환경에서 피사체의 거리를 변경하면서, 그리고피사체배경의색상을변경함에따라다양한피부색상검출알고리즘의성능을비교평가한다. 실험대상은 피부톤의 차이를 보이는 남자 2명과 여자 한 명이고, 배경을 화이트, 블랙, 오렌지, 핑크, 옐로우의 5가지 색으로 구분하여 테스트를 하였다. 성능 평가에 사용한 피부색상 추출 알고리즘은 Peer 알고리즘, NNYUV, NNHSV, LutYUV, Kismet 알고리즘이며, 카메라와 피사체 사이의 거리는 60cm에서 120cm 사이로 한정하여 실험을 하였다. 성능 측정 실험 결과 피사체의 배경 변화에 따른 알고리즘이 성능의 차이를 보이는데, 전반적으로 뉴럴 네트워크를 이용한 NNHSV, NNYUV, 그리고 LutYUV이 안정적인 결과를 보여주었으며, 나머지 알고리즘들은 배경의 변화에 따라 피부색상 검출율이 영향을 많이 받았다. 본 논문에서 보여준 다양한 성능 평가 결과들은 피사체의 주변 환경이 동적으로 변화하는 실제 환경에서 상황에 따라 적응적이고 정확도가 높은 피부 색상 추출 알고리즘을 개발하는데 효과적으로 활용될 것으로 기대된다.
얼굴 분석은 얼굴 인식 머리 움직임과 얼굴 표정을 이용한 인간과 컴퓨터사이의 인터페이스, 모델 기반 코딩, 가상현실 등 많은 응용 분야에서 유용하게 활용된다. 이러한 응용 분야에서는 얼굴의 특징점들을 정확하게 추출해야 한다. 본 논문에서는 눈, 눈썹, 입술의 코너와 같은 얼굴 특징을 자동으로 추출하는 방법을 제안한다. 먼저, 입력 영상으로부터 AdaBoost 기반의 객체 검출 기법을 이용하여 얼굴 영역을 추출한다. 그 다음에는 계곡 에너지. 명도 에너지, 경계선 에너지의 세 가지 특징 에너지를 계산하여 결합한다. 구해진 특징 에너지 영상에 대하여 에너지 값이 큰 수평 방향향의 사각형을 탐색함으로써 특징 영역을 검출한다. 마지막으로 특징 영역의 가장자리 부분에서 코너 검출 알고리즘을 적용함으로써 눈, 눈썹, 입술의 코너를 검출한다. 본 논문에서 제안된 얼굴 특징 추출 방법은 세 가지의 특징 에너지를 결합하여 사용하고 계곡 에너지와 명도 에너지의 계산이 조명 변화에 적응적인 특성을 갖도록 함으로써, 다양한 환경 조건하에서 견고하게 얼굴 특징을 추출할 수 있다.
Facial expressions provide significant clues about one's emotional state; however, it always has been a great challenge for machine to recognize facial expressions effectively and reliably. In this paper, we report a method of feature-based adaptive motion energy analysis for recognizing facial expression. Our method optimizes the information gain heuristics of ID3 tree and introduces new approaches on (1) facial feature representation, (2) facial feature extraction, and (3) facial feature classification. We use minimal reasonable facial features, suggested by the information gain heuristics of ID3 tree, to represent the geometric face model. For the feature extraction, our method proceeds as follows. Features are first detected and then carefully "selected." Feature "selection" is finding the features with high variability for differentiating features with high variability from the ones with low variability, to effectively estimate the feature's motion pattern. For each facial feature, motion analysis is performed adaptively. That is, each facial feature's motion pattern (from the neutral face to the expressed face) is estimated based on its variability. After the feature extraction is done, the facial expression is classified using the ID3 tree (which is built from the 1728 possible facial expressions) and the test images from the JAFFE database. The proposed method excels and overcomes the problems aroused by previous methods. First of all, it is simple but effective. Our method effectively and reliably estimates the expressive facial features by differentiating features with high variability from the ones with low variability. Second, it is fast by avoiding complicated or time-consuming computations. Rather, it exploits few selected expressive features' motion energy values (acquired from intensity-based threshold). Lastly, our method gives reliable recognition rates with overall recognition rate of 77%. The effectiveness of the proposed method will be demonstrated from the experimental results.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.