• 제목/요약/키워드: 적응 표정 인식

검색결과 19건 처리시간 0.026초

적응적 딥러닝 학습 기반 영상 인식 (Image Recognition based on Adaptive Deep Learning)

  • 김진우;이필규
    • 한국인터넷방송통신학회논문지
    • /
    • 제18권1호
    • /
    • pp.113-117
    • /
    • 2018
  • 사람의 감정은 다양한 요소에 의해서 드러난다. 말, 행동, 표정, 옷차림 등등. 하지만 사람은 자신의 감정을 숨길 줄 안다. 따라서 어느 한 가지만으로는 쉽게 그 감성을 짐작할 수 없다. 우리는 이러한 문제를 해결하고 보다 진솔한 사람의 감성을 파악하기 위해 행동과 표정에 주의를 기울이기로 하였다. 행동과 표정은 부단한 노력과 훈련이 없으면 쉽게 감출 수 없기 때문이다. 본 논문에서는 딥러닝 방법을 통해 적은 데이터를 가지고 점진적으로 사람의 행동과 표정을 학습하여 두 가지 결과의 조합을 통해 사람의 감성을 추측하는 알고리즘을 제안한다. 이 알고리즘을 통해 우리는 보다 종합적으로 사람의 감성을 파악할 수 있다.

Facial Animation을 위한 다중 마커의 추적 (The Multi-marker Tracking for Facial Animation)

  • 이문희;김철기;김경석
    • 한국멀티미디어학회:학술대회논문집
    • /
    • 한국멀티미디어학회 2001년도 춘계학술발표논문집
    • /
    • pp.553-557
    • /
    • 2001
  • 얼굴 표정을 애니메이션하는 것은 얼굴 구조의 복잡성과 얼굴 표면의 섬세한 움직임으로 인해 컴퓨터 애니메이션 분야에서 가장 어려운 분야로 인식되고 있다. 최근 3D 애니메이션, 영화 특수효과 그리고 게임 제작시 모션 캡처 시스템(Motion Capture System)을 통하여 실제 인간의 동작 및 얼굴 표정을 수치적으로 측정해내어 이를 실제 애니메이션에 직접 사용함으로써 막대한 작업시간 및 인력 그리고 자본을 획기적으로 줄이고 있다. 그러나 기존의 모션 캡처 시스템은 고속 카메라를 이용함으로써 가격이 고가이고 움직임 추적에서도 여러 가지 문제점을 가지고 있다. 본 논문에서는 일반 저가의 카메라와 신경회로망 및 영상처리기법을 이용하여 얼굴 애니메이션용 모션 캡처 시스템에 적응할 수 있는 경제적이고 효율적인 얼굴 움직임 추적기법을 제안한다.

  • PDF

신경망을 이용한 감정추론 모델 (The Emotion Inference Model Bassed using Neural Network)

  • 김상헌;정재영;이원호;이형우;노태정
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2004년도 추계학술대회 학술발표 논문집 제14권 제2호
    • /
    • pp.309-312
    • /
    • 2004
  • 본 논문에서는 인간과 로봇의 상호작용을 위해 감정에 기반한 감정 처리 모델을 설계하였다. 감정 재현 기술은 사용자에게 친근감을 주기 위해 로봇 시스템이 제스처, 표정을 통하여 사람이나 동물의 감성과 동작을 표현하는 분야이다. 로봇이 감정을 표현하는 문제에는 많은 심리학적, 해부학적, 공학적 문제가 관련된다. 여러가지 애매모호한 상황임에 불구하고 심리학자인 Ekman과 Friesen에 의해 사람의 여섯 가지 기본 표정이 놀람, 공포, 혐오, 행복감, 두려움, 슬픔은 문화에 영향을 받지 않고 공통적으로 인식되는 보편성을 가지고 있는 것으로 연구됐다. 사람의 행동에 대한 로봇의 반응이 학습되어 감정모델이 결정되고, 그 결과가 행동결정에 영향을 주어 로봇의 행동에 반영되도록 하였다. 본 논문에서는 인간과 로봇과의 상호작용을 통해 정보를 축적하고 인간의 반응에 적응해나 갈 수 있는 감정 처리 모델을 제안한다.

  • PDF

어머니가 인식하는 만 1세 영아의 어린이집 초기 적응과정 및 적응프로그램에 관한 사례연구 (A Case Study on Mother's Perceived the Adaptation Process and Program of One-year-old Toddlers in Daycare Center)

  • 정효진;최현숙
    • 한국보육학회지
    • /
    • 제19권3호
    • /
    • pp.99-113
    • /
    • 2019
  • 본 연구는 만 1세 영아를 둔 어머니가 인식하는 어린이집 초기 적응과정 및 적응프로그램에 관하여 서울시에 거주하며 첫 아이가 18개월 또는 20개월에 어린이집에 처음 입소한 4명의 어머니를 대상으로 한 사례연구이다. 집단 및 개별면담을 통해 수집된 자료를 분석한 결과는 다음과 같다. 첫째, 둘째 임신 또는 입소통보전화를 받고 갑작스레 어린이집 입소를 결정하게 되었으며 자녀의 입소를 위해 어린이집 첫 방문 시 30분 내외의 짧은 시간 어머니가 본 교사의 인상과 말투, 표정 등이 어린이집을 선택하는데 큰 영향을 주었다. 분리불안 행동을 보이는 영아뿐 아니라 어머니도 적응과정을 겪었다. 어머니와 교사의 소통과 노력을 통해 어머니들은 영아가 적응해나감을 느낄 수 있었다. 둘째, 만 1세 영아의 적응과정을 통해 어머니가 인식한 적응프로그램의 차이에 대해서는 기관별로 프로그램 안내 및 실행에 있어 큰 차이를 보였다. 본 연구의 참여자들은 어린이집 유형과 상관없이 보편적이고 통합적인 적응프로그램이 필요하다고 생각하고 있었다. 이러한 연구결과를 바탕으로 국가수준의 만 1세 영아를 위한 어린이집 적응프로그램을 개발하는데 기초자료가 될 수 있을 것으로 기대한다.

중심이동과 상호정보 추정에 의한 효과적인 얼굴인식 (An Efficient Face Recognition by Using Centroid Shift and Mutual Information Estimation)

  • 조용현
    • 한국지능시스템학회논문지
    • /
    • 제17권4호
    • /
    • pp.511-518
    • /
    • 2007
  • 본 논문에서는 영상의 중심이동과 상호정보 추정에 의한 효과적인 얼굴인식 기법을 제안하였다. 여기서 중심이동은 영상의 1차 모멘트에 의해 계산된 중심좌표로 얼굴영상을 이동하는 것이며, 이는 인식에 불필요한 배경을 배제시킴으로써 인식성능을 개선시키기 위함이다. 상호정보 추정은 상관관계를 나타내는 척도로 영상간의 유사성을 효과적으로 측정하기 위함이다. 특히 영상의 상호정보 추정을 위한 확률밀도함수 계산에 동일한 량의 샘플분할을 이용한 적응분할의 추정 방법을 이용함으로써 영상 상호간의 종속성을 더욱 더 정확하게 구하였다. 제안된 기법을 64*64 픽셀의 48장(12명*4장) 얼굴영상을 대상으로 실험한 결과, 제안된 기법은 중심이동을 거치지 않는 단순히 상호정보 추정만을 이용하는 기법보다 우수한 인식성능(인식률, 인식속도)이 있음을 확인하였다. 또한 얼굴의 표정, 위치, 그리고 각도 등의 변화에도 매우 강건한 인식성능이 있음을 확인하였다.

얼굴색 정보를 포함하기 위한 LDP 코드 설계에 관한 연구 (A Study on LDP Code Design to includes Facial Color Information)

  • 정웅경;이태환;안용학;채옥삼
    • 융합보안논문지
    • /
    • 제14권7호
    • /
    • pp.9-15
    • /
    • 2014
  • 본 논문에서는 기존 LDP 코드의 문제점을 보완하고 화소의 색상 정보와 밝기 정보, 에지 방향 정보, 그리고 에지 반응 크기 정보를 포함할 수 있는 새로운 LDP를 제안한다. 제안된 방법은 얼굴색 정보를 포함하기 위해 기존 LDP 코드를 줄이는 방법을 제안하고 그 결과를 분석하였다. 새로운 LDP 코드는 기존 LDP 코드와 달리 6비트로 표현함으로써 나머지 2비트에 필요로 하는 정보를 포함할 수 있도록 하였으며, 기존 LDP 코드에 비해서 잡음과 환경 변화에 효과적으로 적응할 수 있도록 하였다. 실험 결과 제안된 LDP 코드는 기존 방법들에 비해 높은 인식률 향상과 얼굴 표정인식 결과에서도 효과적임을 보여주었다.

배경의 변화에 따른 피부색상 검출 알고리즘의 성능 비교 (Performance Comparison of Skin Color Detection Algorithms by the Changes of Backgrounds)

  • 장석우
    • 한국컴퓨터정보학회논문지
    • /
    • 제15권3호
    • /
    • pp.27-35
    • /
    • 2010
  • 정확하게 피부 색상을 검출하는 방법은 얼굴 인식 및 추적, 표정 인식, 성인 영상 검출, 헬스케어 등의 다양한 분야에서 매우 유용하게 사용된다. 본 논문에서는 일반광과 실내 조명이 더해진 환경에서 피사체의 거리를 변경하면서, 그리고피사체배경의색상을변경함에따라다양한피부색상검출알고리즘의성능을비교평가한다. 실험대상은 피부톤의 차이를 보이는 남자 2명과 여자 한 명이고, 배경을 화이트, 블랙, 오렌지, 핑크, 옐로우의 5가지 색으로 구분하여 테스트를 하였다. 성능 평가에 사용한 피부색상 추출 알고리즘은 Peer 알고리즘, NNYUV, NNHSV, LutYUV, Kismet 알고리즘이며, 카메라와 피사체 사이의 거리는 60cm에서 120cm 사이로 한정하여 실험을 하였다. 성능 측정 실험 결과 피사체의 배경 변화에 따른 알고리즘이 성능의 차이를 보이는데, 전반적으로 뉴럴 네트워크를 이용한 NNHSV, NNYUV, 그리고 LutYUV이 안정적인 결과를 보여주었으며, 나머지 알고리즘들은 배경의 변화에 따라 피부색상 검출율이 영향을 많이 받았다. 본 논문에서 보여준 다양한 성능 평가 결과들은 피사체의 주변 환경이 동적으로 변화하는 실제 환경에서 상황에 따라 적응적이고 정확도가 높은 피부 색상 추출 알고리즘을 개발하는데 효과적으로 활용될 것으로 기대된다.

조명 변화에 견고한 얼굴 특징 추출 (Robust Extraction of Facial Features under Illumination Variations)

  • 정성태
    • 한국컴퓨터정보학회논문지
    • /
    • 제10권6호
    • /
    • pp.1-8
    • /
    • 2005
  • 얼굴 분석은 얼굴 인식 머리 움직임과 얼굴 표정을 이용한 인간과 컴퓨터사이의 인터페이스, 모델 기반 코딩, 가상현실 등 많은 응용 분야에서 유용하게 활용된다. 이러한 응용 분야에서는 얼굴의 특징점들을 정확하게 추출해야 한다. 본 논문에서는 눈, 눈썹, 입술의 코너와 같은 얼굴 특징을 자동으로 추출하는 방법을 제안한다. 먼저, 입력 영상으로부터 AdaBoost 기반의 객체 검출 기법을 이용하여 얼굴 영역을 추출한다. 그 다음에는 계곡 에너지. 명도 에너지, 경계선 에너지의 세 가지 특징 에너지를 계산하여 결합한다. 구해진 특징 에너지 영상에 대하여 에너지 값이 큰 수평 방향향의 사각형을 탐색함으로써 특징 영역을 검출한다. 마지막으로 특징 영역의 가장자리 부분에서 코너 검출 알고리즘을 적용함으로써 눈, 눈썹, 입술의 코너를 검출한다. 본 논문에서 제안된 얼굴 특징 추출 방법은 세 가지의 특징 에너지를 결합하여 사용하고 계곡 에너지와 명도 에너지의 계산이 조명 변화에 적응적인 특성을 갖도록 함으로써, 다양한 환경 조건하에서 견고하게 얼굴 특징을 추출할 수 있다.

  • PDF

특징점 기반의 적응적 얼굴 움직임 분석을 통한 표정 인식 (Feature-Oriented Adaptive Motion Analysis For Recognizing Facial Expression)

  • 노성규;박한훈;신홍창;진윤종;박종일
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2007년도 학술대회 1부
    • /
    • pp.667-674
    • /
    • 2007
  • Facial expressions provide significant clues about one's emotional state; however, it always has been a great challenge for machine to recognize facial expressions effectively and reliably. In this paper, we report a method of feature-based adaptive motion energy analysis for recognizing facial expression. Our method optimizes the information gain heuristics of ID3 tree and introduces new approaches on (1) facial feature representation, (2) facial feature extraction, and (3) facial feature classification. We use minimal reasonable facial features, suggested by the information gain heuristics of ID3 tree, to represent the geometric face model. For the feature extraction, our method proceeds as follows. Features are first detected and then carefully "selected." Feature "selection" is finding the features with high variability for differentiating features with high variability from the ones with low variability, to effectively estimate the feature's motion pattern. For each facial feature, motion analysis is performed adaptively. That is, each facial feature's motion pattern (from the neutral face to the expressed face) is estimated based on its variability. After the feature extraction is done, the facial expression is classified using the ID3 tree (which is built from the 1728 possible facial expressions) and the test images from the JAFFE database. The proposed method excels and overcomes the problems aroused by previous methods. First of all, it is simple but effective. Our method effectively and reliably estimates the expressive facial features by differentiating features with high variability from the ones with low variability. Second, it is fast by avoiding complicated or time-consuming computations. Rather, it exploits few selected expressive features' motion energy values (acquired from intensity-based threshold). Lastly, our method gives reliable recognition rates with overall recognition rate of 77%. The effectiveness of the proposed method will be demonstrated from the experimental results.

  • PDF