• Title/Summary/Keyword: 적응 유한요소기법

Search Result 23, Processing Time 0.026 seconds

A SIMPLE ALFORITHM FOR MAINTAINING ACJACENCY AND REMESHENG PROECSS IN DELAUNAY-VORONOII TRIANGULATION (들로네이-보로노이 삼각요소생성기법에 있어서 인접성유지와 요소재생성과정을 위한 단순알고리즘 연구)

  • 송영준
    • Computational Structural Engineering
    • /
    • v.6 no.3
    • /
    • pp.99-112
    • /
    • 1993
  • One of the characteristics of Delaunay-Voronoii methods of mesh generation is local remeshing ability in comparison with other methods, which is very useful in adaptive finite element applications. Main part of the process is to construct remeshing element group out of the whole elements and to remesh it. Adjacent element array, accompanied with an additional algorithm of several lines, is introduced to make the process simple so that implementation of the concept is possible at the level of general PC users.

  • PDF

Adaptive Mesh Generation in Large Deformation Analysis of Shell Structures with Advancing Front Method (Advancing Front Method를 이용한 대변형 쉘 구조물의 적응적 유한요소 자동생성법)

  • 장창두;정진우;문성춘
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.12 no.3
    • /
    • pp.447-455
    • /
    • 1999
  • An adaptive mesh generation scheme is developed for effective non-linear analysis of the shell structures under large deformation. In particular, based on a posteriori error estimation, remeshing method on each load step is of primary interest here. An advancing front method, called paving method, is adopted for remeshing. It can be known that the adaptive mesh generation using contours of spacing values obtained from stress errors has an advantage in the adaptive analysis of the shell structures.

  • PDF

An adaptive X-FEM and its application to shape optimization (적응 확장 유한요소기법과 형상최적설계로의 응용)

  • Yu, Yong-Gyun;Huh, Jae-Sung;Tezuka, Akira;Kwak, Byung-Man
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.538-543
    • /
    • 2007
  • A procedure is proposed to generate optimal grid with minimal user intervention while keeping a prescribed level of accuracy, using an adaptive X-FEM and applied to shape optimization. In spite of various advantages of X-FEM, however, there are several obstacles for practical applications. Because of using a uniform background mesh and additional degree of freedoms for enrichment, an X-FEM is usually computationally more expensive than traditional finite element method. Furthermore, there are often accuracy problems. For an automatic procedure of optimal mesh generation, an h-adaptive scheme and a posteriori error estimation obtained by a post-processing process are utilized. The procedure is shown by 2-D shape optimization examples.

  • PDF

Single Level Adaptive hp-Refinement using Integrals of Legendre Shape Function (적분형 르장드르 형상함수를 이용한 단일 수준 적응적 hp-체눈 세분화)

  • Jo, Jun-Hyung;Yoo, Hyo-Jin;Woo, Kwang-Sung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.3
    • /
    • pp.331-340
    • /
    • 2010
  • The basic theory and application of new adaptive finite element algorithm have been proposed in this study including the adaptive hp-refinement strategy, and the effective method for constructing hp-approximation. The hp-adaptive finite element concept needs the integrals of Legendre shape function, nonuniform p-distribution, and suitable constraint of continuity in conjunction with irregular node connection. The continuity of hp-adaptive mesh is an important problem at the common boundary of element interface. To solve this problem, the constraint of continuity has been enforced at the common boundary using the connectivity mapping matrix. The effective method for constructing of the proposed algorithm has been developed by using hierarchical nature of the integrals of Legendre shape function. To verify the proposed algorithm, the problem of simple cantilever beam has been solved by the conventional h-refinement and p-refinement as well as the proposed hp-refinement. The result obtained by hp-refinement approach shows more rapid convergence rate than those by h-refinement and p-refinement schemes. It it noted that the proposed algorithm may be implemented efficiently in practice.

Structural System Identification using adaptive design domain approach (적응성 설계영역 기법을 이용한 구조 시스템 식별)

  • Jang, Seong-Min;Baek, Sung-Min;Cho, Meang-Hyo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2009.04a
    • /
    • pp.146-150
    • /
    • 2009
  • 구조 시스템 식별은 역문제로서 이상화된 유한요소 모델을 실험치와 일치시키기 위해 유한요소모델을 보정하는 형태로 주로 이루어진다. 이를 위해 비선형 섭동법이 사용되고 있으며 이 방법을 실제 문제에 사용하기 위해서 시스템 축소법에 대한 연구가 진행 되고 있다. 하지만 기존의 방법에서는 유한요소모델의 모든 요소가 실험치와 다르다고 가정하여서 전체 요소 수만큼의 설계 변수를 두어서 역해석을 수행한다. 이런 기존의 방법에서는 시스템이 커짐에 따라 연산 시간이 기하급수적으로 증가하게 되어 어려움이 있다. 설계 변수의 증가는 해공간(solution space)의 확장을 의미하며 이는 해의 정확성에 큰 영향을 끼친다. 본 연구에서는 모델을 적은 수의 설계영역으로 나누어서 반복연산 단계마다 해의 경향성을 이용해서 설계 영역을 전략적으로 변경하는 적응성 설계영역기법을 제안한다. 수치예제를 통해 본 연구에서 제안하는 기법의 정확도와 효용성을 고찰한다.

  • PDF

비압축성 점성유체의 유한요소 해석

  • 유원진
    • Computational Structural Engineering
    • /
    • v.11 no.1
    • /
    • pp.90-95
    • /
    • 1998
  • 본 고에서는 비압축성 점성유체의 유한요소해석 기법을 소개하였다. 대류항의 상류화 기법으로 안정된 해를 도출할 수 있으며 Penalty 방법에 기반하여 압력항을 지배방정식으로부터 소거함으로써 해석시간과 요구저장공간을 감소시켰다. 실린더 주변의 유동장을 해석하여 와의 방출을 성공적으로 묘사하였으며 항력계수를 17%정도의 오차로 계산하였다. 적응적 요소세분화 기법에 대한 연구를 통해 적절한 오차평가 기법 및 최적의 체눈을 형성하는 기법을 제시하였다. 또한 동적 해석에 적합한 요소재결합 알고리즘에 대한 연구가 진행중이다. 본 고의 결과는 직접적으로 풍공학분야에 사용하기에는 아직 계산 시간의 효율성이나 해의 정확도 및 안정성면에서 무리가 있으나 추가적인 연구를 통하여 해석기법의 개선을 도모하고 컴퓨터 등 계산장비의 급속한 발전으로 장래에 경쟁력을 획득할 수 있을 것으로 기대된다.

  • PDF

Adaptive Domain/Boundary Decomposition Method for Computational Efficiency of Thermo-Elasto-Viscoplastic Damage and Contact Analysis (열탄점소성 손상 및 접촉 해석의 효율화를 위한 적응성 영역/경계 분할 기법)

  • Kim, Sung-Jun;Kim, Jong-Il;Shin, Eui-Sup
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.72-75
    • /
    • 2010
  • 본 논문에서는 열탄점소성 손상과 접촉 문제의 효율적인 해석을 위하여 적응성 영역/경계 분할법을 제안하였다. 적응성 영역/경계 분할법은 시간 증분 또는 반복 기법 단계에서 열탄점소성 손상과 같은 재료 비선형성을 감안하여 부영역을 재설정하며, 접촉에 따른 경계 비선형성은 경계면을 통하여 부영역으로부터 독립적으로 분할한다. 분할된 각각의 부영역과 경계면을 기준으로 유한요소 정식화를 수행하며, 공유면 및 접촉 공유면의 연속 구속 조건을 처리하기 위하여 벌칙 함수 기법을 적용하였다. 결과적으로 재료 및 경계 비선형성은 일부 부영역과 접촉 경계면에서 계산되는 유한요소 행렬에 국한된다. 수치 실험을 통하여 적응성 해석 알고리듬의 기본적인 특성과 효율성 향상에 대하여 분석하였다.

  • PDF

Finite Element Analysis of Flow by Adaptive Meshing Technique (적응적 요소망을 이용한 흐름의 유한요소 해석)

  • Jang, Hyung-Sang;Kim, Eu-Gene;Goh, Tae-Jin;Kim, Do-Hun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1721-1725
    • /
    • 2006
  • 유한요소법으로 공학적 문제를 해결할 때에는 적절한 모델링을 통하여 가장 빠르고 정확한 해를 얻도록 해야 한다. 유체 흐름의 기본 변수인 속도는 그 공간 도함수가 요소간에 불연속을 이루게 된다. 속도의 공간 도함수는 기본적으로 유체에서의 응력, 압력, 및 와도 등과 밀접한 관련이 있다. 또한 이러한 요소간의 속도의 공간 도함수에서 발생하는 불연속의 크기는 요소망이 세분화되어 감에 따라 감소하면서 정확한 해에 수렴하게 된다. 즉 속도의 공간 도함수를 대상으로 오차에 정도를 판단하는 것이 기존의 유한요소 모델의 타당성을 판단하는 기준으로 적합함을 알 수 있다.

  • PDF

Adaptive Importance Sampling Method with Response Surface Technique (응답면기법을 이용한 적응적 중요표본추출법)

  • 나경웅;김상효;이상호
    • Computational Structural Engineering
    • /
    • v.11 no.4
    • /
    • pp.309-320
    • /
    • 1998
  • 중요표본추출기법중에서도 층화표본추출법을 이용한 적응적 중요표본추출기법이 일반적으로 가장 합리적인 것으로 알려져 있다. 그러나 확률장 유한요소모형문제와 같이 기본 확률변수의 규모가 큰 경우에는 층화표본추출법에서 요구되는 기본적인 표본점의 규모가 급증하여 효율성이 떨어지게 된다. 본 연구에서는 이러한 한계성을 극복하기 위하여 층화표본추출에서 기본확률변수를 사용하는 대신에 기본확률변수들의 함수이며 새로운 확률변수인 응답값을 이용하는 방법을 개발하였다. 여기에서 응답값은 일반적인 함수형태로 표시되지 않으며, 한 번의 응답계산에 많은 계산량이 소요되므로 이러한 문제점을 해결하기 위하여 응답면식을 이용한 층화표본추출법을 개발하였다. 개발된 기법에서는 기본확률변수의 모의발생규모는 기본의 기본확률변수를 이용한 층화표본추출법에서 보다 증가하지만 매우 많은 계산량을 요구하는 실제응답해석규모는 응답면식을 이용함으로써 획기적으로 감소되었다. 특히 본 기법은 기본확률변수의 규모가 크고 대상한계상태의 파괴확률이 낮을수록 기존의 방법과 비교해 효율성이 증대되는 것으로 분석되었다.

  • PDF

전산유체역학과 유한요소법

  • 손정락
    • Journal of the KSME
    • /
    • v.29 no.4
    • /
    • pp.403-413
    • /
    • 1989
  • 유한요소법의 전산유체 역학분야에 대한 응용현황을 계산방법과 적용례를 중심으로 정리하였다. 유한요소법의 가장 큰 장점은 복잡한 유동영역을 해석하기 위한 불규칙 요소망(unstructured mesh)의 사용이라 볼 수 있으며 적응적 요소망을 이용하여 계산의 정확도를 높일 수 있는 것 또한 강점이라 할 수 있다. 다만 불규칙 요소망 사용으로 인해 수반되는 대수 방정식 계산시간 및 기억용량의 증가는 conjugate gradient 방법 등을 이용하여 반드시 해결되어야만 한다. 지금 까지 유한요소법을 이용한 계산방법을 개발해 오는 과정을 보면 유한차분법에서 오래 전에 개 발된 방법들을 도입한 경우가 많았으며 특히 난류 및 개발된 경우가 많으며 대부분의 경우 이 들을 그대로 도입, 이용하였다. 반대로 최근에 항공기 동체설계 분야를 중심으로 복잡한 형태의 유동영역을 해석이 요구되는 경우 유한차분법, 특히 유한체적법(finite volume method)에 삼각형 유한요소를 이용한 불규칙 요소망을 도입하여 성공적으로 이용하고 있다. 따라서 전산유체 역 학의 발전을 위하여 두 분야의 유기적인 협조가 필요하며 결과적으로 전산유체 역학기법이 완 전히 기계설계의 한 분야로 정립될 수 있도록 많은 노력이 필요하다고 본다.

  • PDF