• Title/Summary/Keyword: 적응 신경망 제어기

Search Result 76, Processing Time 0.03 seconds

A Design of the PID controller Using Wavelet Neural network (웨이브렛 신경망을 이용한 PID제어기의 설계)

  • 하홍곤
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.1
    • /
    • pp.74-79
    • /
    • 2003
  • In this paper, the PID controller is constructed with a neural network and wavelet function. And the wavelet neural PID controller is adapted by choosing the values of the dilation and translation parameter of the wavelet function. Weights are adjusted by the inverse propagation algolithm. Applying this method to the position control system, its usefulness is verified from the results of experiment.

On Learning and Structure of Cerebellum Model Linear Associator Network(I) -Analysis & Development of Learning Algorithm- (소뇌모델 선형조합 신경망의 구조 및 학습기능 연구(I) -분석 및 학습 알고리즘 개발-)

  • Hwang, H.;Baek, P.K.
    • Journal of Biosystems Engineering
    • /
    • v.15 no.3
    • /
    • pp.186-198
    • /
    • 1990
  • 인간 소뇌의 구조와 기능을 간략하게 수학적으로 모델링하여 입력에 따른 시스템의 적정 출력을 학습에 의한 적응 제어 방식으로 추출해 내는 소뇌모델 대수제어기(CMAC : Cerebellar Model Arithmetic Controller)가 제안되었다. 본 논문에서는 연구개발된 기존 신경회로망과의 비교 분석에 의거하여, 소뇌모델 대수제어기 대신 네트의 특성에 따라 소뇌모델 선형조합 신경망(CMLAN : Cerebellum Model Linear Associator Network)이라 하였다. 소뇌모델 선형조합 신경망은 시스템의 제어 함수치를 결정하는 데 있어, 기존의 제어방식이 시스템의 모델링을 기초로 하여 알고리즘에 의한 수치해석적 또는 분석적 기법으로 모델 해를 산출하는 것과 달리, 학습을 통하여 저장되는 분산기억 소자들의 함수치를 선형적으로 조합함으로써 시스템의 입출력을 결정한다. 분산기억 소자로의 함수치 산정 및 저장은 소뇌모델 선형조합 신경망이 갖는 고유의 구조적 상태공간 매핑(State Space Mapping)과 델타규칙(Delta Rule)에 의거한 시스템의 입출력 상태함수의 학습으로써 수행된다. 본 논문을 통하여 소뇌모델 선형조합신경망의 구조적 특성, 학습 성질과 상태공간 설정 및 시스템의 수렴성을 규명하였다. 또한 기존의 최대 편차수정 학습 알고리즘이 갖는 비능률성 및 적용 제한성을 극복한 효율적 학습 알고리즘들을 제시하였다. 언급한 신경망의 특성 및 제안된 학습 알고리즘들의 능률성을 다양한 학습이득(Learning Gain)하에서 비선형 함수를 컴퓨터로 모의 시험하여 예시하였다.

  • PDF

The Analysis of Nonlinear Signal using Fuzzy Entropy (퍼지엔트로피를 이용한 비선형신호의 해석)

  • 박인규;황상문;김남호
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 1999.11a
    • /
    • pp.388-395
    • /
    • 1999
  • 본 논문의 목적은 퍼지 엔트로피를 이용하여 비선형신호를 예측하는 것이다. 이 방법은 분할된 여러 부 공간(subspace)에 대해 입력 데이터로부터 퍼지 엔트로피를 이용하여 각각의 규칙에 등급을 정하여 불필요한 제어규칙을 제거하여 바람직한 규칙베이스를 구성하도록 한 것이다. 적용되는 퍼지 신경망의 기본적인 구조는 퍼지 제어기의 규칙베이스와 추론의 과정을 신경회로망을 이용하여 구현하며 퍼지 제어규칙의 매개변수들은 역전파 알고리즘에 의해 적응되어진다. 또한 매개변수의 수를 줄이기 위하여 제어규칙의 결론부의 출력값은 신경망의 가중치로 구성하였다. 결국 퍼지 신경망의 복잡도를 줄일 수 있다. Mackey-Glass 시계열의 예측에 대한 컴퓨터 시뮬레이션을 통하여 본 논문에서 제안한 방법의 효율성을 입증하고, 제안된 방법을 EEG 생리신호 분석에 이용될 수 있다.

  • PDF

The Vibration Control of a Opened Box Structure By a Neuro-Controller (신경망 제어기를 이용한 열린 박스 구조물의 진동 제어)

  • 신윤덕;장승익;기창두
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.983-987
    • /
    • 2003
  • Vibration causes noise and makes structure unstable. Especially, due to the effort of lightening, deformation of flexible structure is increased in its shape. Just a little disturbance causes vibration and low damping ratio causes residual vibration lasts long time. In this paper, by using a neuro-controller, which is one of the algorithm of adaptive control. we performed adaptive control of flexible cantilever plate and opened box structure with piezoelectric materials. The proposed adaptive vibration control algorithm, a neuro-controller, is proved in its effectiveness by applying to a opened box structure. The neuro-controller was implemented with DSP, and the real-time adaptive vibration control experiment results confirm that neuro-controller is reliable.

  • PDF

A Rule-based Integration of Neural Network Modules based on Cellular Automata for Sensory-Motor Controller (센서-모터 제어기를 위한 셀룰라 오토마타 기반 신경망 모듈의 규칙기반 결합)

  • Kim, Kyung-Joong;Song, Geum-Beom;Cho, Sung-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.1
    • /
    • pp.19-26
    • /
    • 2002
  • There are some difficulties to construct a sensory-motor controller for an autonomous mobile robot such as coordinating the mechanics and control system parts of the robot, and managing interaction with external environments. In previous research, we evolve the CAM-Brain, neural networks based on cellular automata, to control an autonomous mobile robot. In this paper, we propose the method of combining multi-modules evolved to do simple behavior in order to making more sophisticated behaviors because the controller composed of one neural network module is difficult to make complex behaviors. In experimental results, we can get the controller adapting to more complex environments by combining CAM-Brain modules evolved to do simple behavior by rule-based approach.

RBFNN Based Decentralized Adaptive Tracking Control Using PSO for an Uncertain Electrically Driven Robot System with Input Saturation (입력 포화를 가지는 불확실한 전기 구동 로봇 시스템에 대해 PSO를 이용한 RBFNN 기반 분산 적응 추종 제어)

  • Shin, Jin-Ho;Han, Dae-Hyun
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.19 no.2
    • /
    • pp.77-88
    • /
    • 2018
  • This paper proposes a RBFNN(Radial Basis Function Neural Network) based decentralized adaptive tracking control scheme using PSO(Particle Swarm Optimization) for an uncertain electrically driven robot system with input saturation. Practically, the magnitudes of input voltage and current signals are limited due to the saturation of actuators in robot systems. The proposed controller overcomes this input saturation and does not require any robot link and actuator model parameters. The fitness function used in the presented PSO scheme is expressed as a multi-objective function including the magnitudes of voltages and currents as well as the tracking errors. Using a PSO scheme, the control gains and the number of the RBFs are tuned automatically and thus the performance of the control system is improved. The stability of the total control system is guaranteed by the Lyapunov stability analysis. The validity and robustness of the proposed control scheme are verified through simulation results.

Co-Evolution of Subsumption Architecture for Behavior Learning of Autonomous Mobile Robot (자율 이동 로봇의 행동 학습을 위한 포섭 구조의 공진화)

  • 김현영;허광승;이동욱;심귀보
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.05a
    • /
    • pp.28-31
    • /
    • 2002
  • 본 논문에서는 자율 이동 로봇의 학습을 위해 신경망과 진화 알고리즘을 이용한 방법을 제안한다. 이것은 자연계의 생물이 진화와 학습을 통해 환경에 적응해 나가는 방식과 유사하다. 또한 본 논문에서는 행동기반 제어 방법인 포섭구조를 이용해 로봇의 행동을 제어하는 방법을 제안한다 포섭 구조는 행동 규칙을 병렬적으로 모듈화 하여 낮은 레벨에서는 기본적인 행동을 담당하고, 높은 레벨에서는 좀 더 복잡한 행동을 담당하는 구조로 되어있다 따라서 각 행동 레벨이 협조를 함으로써 복잡한 임무를 수행할 수 있다. 포섭 구조에서 각 레벨의 제어기는 신경 망으로 구성하며 각 행동 레벨이 서로 영향을 주고받으며 진화함으로써 주어진 임무를 달성하도록 한다. 제안된 방법은 자율 이동 로봇인 Khepera 로봇을 이용해 실제 환경에서 구현함으로서 그 유효성을 입증한다.

  • PDF

Flight Control of Tilt-Rotor Airplane In Rotary-Wing Mode Using Adaptive Control Based on Output-Feedback (출력기반 적응제어기법을 이용한 틸트로터 항공기의 회전익 모드 설계연구)

  • Ha, Cheol-Keun;Im, Jae-Hyoung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.3
    • /
    • pp.228-235
    • /
    • 2010
  • This paper deals with an autonomous flight controller design problem for a tilt-rotor aircraft in rotary-wing mode. The inner-loop algorithm is designed using the output-based approximate feedback linearization. The model error originated from the feedback linearization is cancelled within allowable tolerance by using single-hidden-layer neural network. According to Lyapunov direct stability theory, the adaptive update law is derived to run the neural network on-line, which is based on the linear observer dynamics. Moreover, the outer-loop algorithm is designed to track the trajectory generated from way-point guidance. Especially, heading and flight-path angle line-of-sight guidance are applied to the outer-loop to improve accuracy of the landing tracking performance. The 6-DOF nonlinear simulation shows that the overall performance of the flight control algorithm is satisfactory even though the collective input response shows instantaneous actuator saturation for a short time due to the lack of the neural network and the saturation protection logic in that loop.

(Design of Neural Network Controller for Contiunous-Time Chaotic Nonlinear Systems) (연속 시간 혼돈 비선형 시스템을 위한 신경 회로망 제어기의 설계)

  • O, Gi-Hun;Choe, Yun-Ho;Park, Jin-Bae;Im, Gye-Yeong
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.39 no.1
    • /
    • pp.51-65
    • /
    • 2002
  • This paper presents a design method of the neural network-based controller using an indirect adaptive control method to deal with an intelligent control for chaotic nonlinear systems. The proposed control method includes the identification and control Process for chaotic nonlinear systems. The identification process for chaotic nonlinear systems is an off-line process which utilizes the serial-parallel structure of multilayer neural networks and simple state space neural networks. The control process is an on-line process which uses the trained neural networks as the system model. An error back-propagation method was used for training of identification and control for chaotic nonlinear systems. The performance of the proposed neural network controller was evaluated by application to the Duffing equation and the Lorenz equation, and the proposed controller was compared with other neural network-based controllers by computer simulations.

Control Law Design for a Tilt-Duct Unmanned Aerial Vehicle using Sigma-Pi Neural Networks (Sigma-Pi 신경망을 이용한 틸트덕트 무인기의 제어기 설계연구)

  • Kang, Youngshin;Park, Bumjin;Cho, Am;Yoo, Changsun
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.1
    • /
    • pp.14-21
    • /
    • 2017
  • A Linear parameterized Sigma-Pi neural network (SPNN) is applied to a tilt-duct unmanned aerial vehicle (UAV) which has a very large longitudinal stability ($C_{L{\alpha}}$). It is uncontrollable by a proportional, integral, derivative (PID) controller due to heavy stability. It is shown that the combined inner loop and outer loop of SPNN controllers could overcome the sluggish longitudinal dynamics using a method of dynamic inversion and pseudo-control to compensate for reference model error. The simulation results of the way point guidance are presented to evaluate the performance of SPNN in comparison to a PID controller.