• 제목/요약/키워드: 적응형학습

검색결과 267건 처리시간 0.026초

퍼지 성능 측정자를 이용한 적응 데이터 마이닝 모델 (Adaptive Data Mining Model using Fuzzy Performance Measures)

  • 이현숙
    • 정보처리학회논문지B
    • /
    • 제13B권5호
    • /
    • pp.541-546
    • /
    • 2006
  • 데이터 마이닝은 방대한 양의 데이터를 다루는 응용영역에서 학습과 함께 연구되어 실세계의 문제를 해결할 수 있는 구체적인 방법을 제시해 주고 있다. 데이터 마이닝을 위한 보편적인 방법으로 사용되어 온 클러스터 분석 방법은 데이터의 양이 많아질수록, 실세계에서 직접 얻은 데이터일수록 경계가 불분명하고 처리과정에서 많은 오차가 발생하게 되어 직접 적용하고자할 때 고려해야할 점이 많다. 이를 위하여 퍼지 개념이 도입된 퍼지 클러스터링 방법론은 클러스터 타당성문제와 함께 널리 연구되어왔다. 본 논문에서는 클러스터링의 결과가 만들어 내는 오류 값을 최소화하는 방향으로 학습하는 비교사 학습신경망에 의하여 클러스터링이 이루어지고 이를 퍼지 성능 측정자에 의하여 평가하면서 최적의 클러스터 수를 찾아가는 적응형 데이터 마이닝 모델을 제안하고자 한다 또한 뉴스그룹의 텍스트 데이터를 처리하여 문서분류에 활용할 수 있음을 보임으로 제안된 모델의 타당성을 확인하고자 한다.

대화형 유전 프로그래밍을 이용한 적응적 문장생성 열차예약 에이전트 (Train Booking Agent with Adaptive Sentence Generation Using Interactive Genetic Programming)

  • 임성수;조성배
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제12권2호
    • /
    • pp.119-128
    • /
    • 2006
  • 대화형 에이전트가 다양한 분야에서 적용됨에 따라서 현실성 있는 대화 생성을 위한 자연언어 생성에 대한 연구가 관심을 끌고 있다. 대화형 에이전트에서는 보통 미리 준비된 답변을 이용하여 사용자와 대화를 수행하지만, 최근에는 문장을 동적으로 생성하고 학습함으로써 보다 유연하고 현실성있는 서비스를 제공하는 대화형 에이전트가 활발히 연구되고 있다. 본 논문에서는 대화형 유전 프로그래밍을 이용한 문장생성 방법을 제안한다. 이 방법은 문장의 구조를 나타내는 문장계획 트리로 인코딩된 개체를 평가자의 평가를 통해 적응적인 문장을 얻는다. 이 방법의 유용성을 검증하기 위해 제안하는 방법으로 열차예약 에이전트를 구현한 후, 사용자 평가를 수행하였다. 그 결과 제안하는 방법이 도메인에 적합한 문장을 생성하는 것을 확인할 수 있었다.

최적 스택필터 설계를 위한 고속병렬기법 (Fast Parallel Algorithm For Optimal Stack Filter Design)

  • 유지상
    • 전자공학회논문지S
    • /
    • 제36S권2호
    • /
    • pp.88-95
    • /
    • 1999
  • 스텍필터는 신호복원성이 뛰어난 디지털 비선형 필터의 일종이다. 그러나 기존의 적응형 설계기법을 이요하면 순차적인 특성 때문에 윈도우의 크기가 큰 스텍필터의 설계시 많은 계산량으로 그 응용에 한계가 있었다. 본 논문에서는 평균적대오차를 최소화하는 최적의 스텍필터를 설계하기 위한 병렬구조의 기법을 제안하였고 제안된 기법을 사용하면 적응특성 즉 학습의 반복적인 특성을 가지면서 최적의 필터로 수령하는데 필요한 반복 횟수를 줄임으로써 기존의 설계기법보다 설계시간을 단축할 수 있다는 사실과 제안된 기법이 최적의 스텍필터로 수렴한다는 사실을 증명하였다.

  • PDF

소프트웨어 오류 탐지를 위한 아키텍처 기반의 다계층적 자가적응형 모니터링 방법 (An Architecture-based Multi-level Self-Adaptive Monitoring Method for Software Fault Detection)

  • 윤현지;박수용
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제37권7호
    • /
    • pp.568-572
    • /
    • 2010
  • Mission-critical 시스템의 경우 자가 치유는 신뢰성을 보장하기 위한 기술 중 하나이다. 자가치유는 오류 탐지와 오류 회복으로 이루어져 있으며 오류 탐지는 오류 회복을 가능하게 하는 자가 치유의 중요한 첫 단계이지만 시스템에 과부하를 주는 문제가 있다. 모델 기반의 방법 등으로 오류를 탐지할 수 있는데 시스템의 모든 행위를 통지하고 정상 행위 모델과 통지된 시스템의 행위를 비교하여야 하므로 그양이 많고 부하가 크기 때문이다. 본 논문에서는 모델 기반의 오류 탐지 방법을 보완하는 아키텍처 기반의 다계층적 자가적응형 모니터링 방법을 제안한다. 소프트웨어 아키텍처 상에서 오류 탐지의 중요도는 컴포넌트 마다 다르다. 각 컴포넌트마다 발생하는 오류의 심각도와 빈도가 다르기 때문이다. 모니터링 중요도가 높은 컴포넌트에는 강도가 높고 모니터링 중요도가 낮은 컴포넌트에는 강도가 낮도록 모니터가 적응한다면 오류 탐지의 부하는 줄이고 효율은 유지시킬 수 있다. 또한 소프트웨어의 환경 변화 및 아키텍처상의 변화 등에 따라 오류 발생 빈도가 변화하여 컴포넌트의 오류 탐지 중요도가 변화하기 때문에 학습을 통해 이를 추적하여 자가적응적으로 중요도가 높은 컴포넌트를 집중 모니터링 한다.

멀티턴 대화를 활용한 레퍼런스 기반의 발화 생성 모델 (Reference-based Utterance Generation Model using Multi-turn Dialogue)

  • 박상민;손유리;금빛나;김홍진;김학수;김재은
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2022년도 제34회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.88-91
    • /
    • 2022
  • 디지털 휴먼, 민원 상담, ARS 등 칫챗의 활용과 수요가 증가함에 따라 칫챗의 성능 향상을 위한 다양한 연구가 진행되고 있다. 특히, 오토 인코더(Auto-encoder) 기반의 생성 모델(Generative Model)은 높은 성능을 보이며 지속적인 연구가 이루어지고 있으나, 이전 대화들에 대한 충분한 문맥 정보의 반영이 어렵고 문법적으로 부적절한 답변을 생성하는 문제가 있다. 이를 개선하기 위해 검색 기반의 생성 모델과 관련된 연구가 진행되고 있으나, 현재 시점의 문장이 유사해도 이전 문장들에 따라 의도와 답변이 달라지는 멀티턴 대화 특징을 반영하여 대화를 검색하는 연구가 부족하다. 본 논문에서는 이와 같은 멀티턴 대화의 특징이 고려된 검색 방법을 제안하고 검색된 레퍼런스(준정답 문장)를 멀티턴 대화와 함께 생성 모델의 입력으로 활용하여 학습시키는 방안을 제안한다. 제안 방안으로 학습된 발화 생성 모델은 기존 모델과 비교 평가를 수행하며 Rouge-1 스코어에서 13.11점, Rouge-2 스코어에서 10.09점 Rouge-L 스코어에서 13.2점 향상된 성능을 보였고 이를 통해 제안 방안의 우수성을 입증하였다.

  • PDF

이미지의 피사계 심도를 빠르게 계산하기 위한 쿼드트리 기반의 합성곱 신경망 최적화 (Quadtree-based Convolutional Neural Network Optimization to Quickly Calculate the Depth of Field of an Image)

  • 김동희;김수균;김종현
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2021년도 제63차 동계학술대회논문집 29권1호
    • /
    • pp.257-260
    • /
    • 2021
  • 본 논문에서는 카메라의 포커싱과 아웃포커싱에 의해 이미지에서 뿌옇게 표현되는 DoF(Depth of field, 피사계 심도) 영역을 쿼드트리(Quadtree) 기반의 합성곱 신경망을 통해 빠르게 찾는 방법을 제안한다. 우리의 접근 방식은 RGB채널기반의 상호-상관 필터를 이용하여 DoF영역을 이미지로부터 효율적으로 분류하고, 적응형 트리인 쿼드트리를 기반으로 유의미한 영역만을 분류한다. 이 과정에서 손실 없이 온전하게 DoF영역을 추출하기 위한 필터링 과정을 거친다. 이러한 과정에서 얻어진 이미지 패치들은 전체 이미지에 비해 적은 영역으로 나타나며, 이 적은 개수의 패치들을 이용하여 네트워크 단계에서 사용할 이미지-DoF가중치 맵 데이터 쌍을 설정한다. 네트워크 과정에서 학습할 때 사용되는 데이터는 이미지와 상호-상관 필터 기반으로 추출된 DoF 가중치 맵을 이용한다. 본 논문에서 제안하는 쿼드트리 기반 합성곱 신경망은 이미지로부터 포커싱과 아웃포커싱된 DoF영역을 자동으로 추출하는 과정을 학습시키기 위해 사용된다. 결과적으로 학습에 필요한 데이터 영역이 줄어듦으로써 학습 시간과 메모리를 절약했으며, 테스트 결과로 얻은 DoF 가중치 이미지는 입력 이미지에서 DoF영역을 더욱더 빠른 시간 내에 찾아낸다.

  • PDF

비콘을 사용한 ANN기반 적응형 거리 측정 (ANN-based Adaptive Distance Measurement Using Beacon)

  • 노지우;김태영;김순태;이정휴;유희경;강윤구
    • 한국인터넷방송통신학회논문지
    • /
    • 제18권5호
    • /
    • pp.147-153
    • /
    • 2018
  • 저전력 블루투스(BLE; Bluetooth Low Energy) 기술을 사용한 비콘은 실외에서만 위치 측위가 가능한 GPS(Global Positioning System)와 달리 실내에서도 위치 파악이 가능하다. 비콘을 사용한 실내 거리 측정에는 RSSI(Received Signal Strength Indication)값이 핵심 요소인데 그에 반해 RSSI값은 여러 환경요소로부터 영향을 받기 때문에 예측된 거리와 실제 거리의 오차가 크게 나타난다. 이러한 이슈를 다루기 위해 비콘을 사용한 ANN(Artificial Neural Network)기반 적응형 거리 측정을 제안한다. 먼저 RSSI의 잡음을 줄이기 위해 확장 칼만 필터와 신호 안정화 필터를 사용한 전처리 과정을 거친다. 그리고 각각 특정 학습 데이터 셋을 가진 다층 ANN들은 학습을 거치게 된다. 결과에서는 평균오차 0.67m를 보여주고, 0.78의 precision을 보여준다.

적응형 뉴로-퍼지(ANFIS)를 이용한 건축공사비 예측 (Prediction of Building Construction Project Costs Using Adaptive Neuro-Fuzzy Inference System(ANFIS))

  • 윤석헌;박우열
    • 한국건축시공학회지
    • /
    • 제23권1호
    • /
    • pp.103-111
    • /
    • 2023
  • 건설 프로젝트의 초기단계에서 공사비를 정확하게 예측하는 것은 프로젝트를 성공적으로 수행하기 위해 매우 중요하다. 본 연구에서는 ANFIS 모델을 활용하여 건설프로젝트의 초기단계에 건축공사비를 예측할 수 있는 모델을 제시하였다. 모델의 활용도를 높이기 위해 공개된 공사비 데이터를 활용하였으며 프로젝트 초기단계의 제한된 정보를 바탕으로 예측할 수 있는 모델을 제시하고자 하였다. ANFIS와 관련된 기존 연구를 분석하여 최근의 동향을 파악하였으며 ANFIS의 기본 구조를 고찰한 후 건축공사비 예측을 위한 ANFIS 모델을 제시하였다. ANFIS의 모델의 소속함수의 종류와 개수에 따라 달라지는 예측 성능을 분석하여 가장 성능이 우수한 모델을 제시하였으며, 대표적인 기계학습 모델의 예측 정확도와 비교분석하였다. 적용결과 ANFIS 모델을 다른 기계학습 모델과 비교한 결과 동등 이상으로 성능을 나타내 프로젝트 초기단계 공사비 예측에 적용 가능할 것으로 판단된다.

GIS 예방진단 시스템용 원격관리시스템 개발 (The Development of Remote Management System for GIS Preventive Diagnosis System)

  • 민병운;명희철;최호웅;이병호;김정한
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.2065-2066
    • /
    • 2008
  • GIS 예방진단 시스템을 현장에 적용할 경우 예상치 못한 노이즈와 전기외란으로 예측 일치율에 저하가 발생한다. 본 논문에서는 각 현장에 설치된 온라인 GIS예방진단 시스템의 기록정보를 받아들여 새롭게 학습을 시킴으로써 현장 적응형 진단을 구축할 수 있는 방안을 제시한다. 또한 현장의 각종 노이즈 패턴도 학습시킴으로써 진단엔진의 성능향상을 도모한다.

  • PDF

중앙 집중형 망에서 인공면역체계 기반의 적응적 망 이상 상태 탐지 모델 설계 (An Adaptive Anomaly Detection Model Design based on Artificial Immune System in Central Network)

  • 유경민;양원혁;이상열;정혜련;소원호;김영천
    • 한국통신학회논문지
    • /
    • 제34권3B호
    • /
    • pp.311-317
    • /
    • 2009
  • 기존의 망 이상 상태 탐지 시스템들은 주로 정상 상태의 시스템 사용률 등과 같은 통계 값으로 결정된 임계값을 기반으로 탐지하기 때문에 이상 상태임에도 불구하고 정상 상태와 비슷한 시스템 통계 값을 가지면 탐지하지 못하는 문제점이 있다. 이러한 단점들을 해결하기 위하여 본 논문에서는 인간면역체계의 학습, 적응, 기억 능력등의 특성을 이용하는 인공면역체계 기반의 적응적 망 이상 상태 탐지 모델을 제안한다. 이를 위하여 인간면역 시스템의 수지상 세포 (Dendritic Cell)와 T 세포 사이의 상호 작용을 이용한 탐지 모델을 설계하고 각 구성 요소 및 기능을 정의한다. 중앙 집중 제어 노드는 각 라우터 노드로부터 전달받은 정보를 분석하여 대응 방법을 해당 라우터들에게 전달한다. 또한 라우터 노드는 학습을 통해 얻어진 데이터를 기반으로 이상 상태를 탐지할 뿐만 아니라 중앙 집중 제어 노드로부터 전달받은 정보를 이용하여 이상 상태를 처리한다. 최종적으로 제안된 이상 상태탐지 모델의 타당성을 검증하기 위하여 구성 모듈을 설계하고 flooding 공격에 대한 시뮬레이션을 수행한다.